## <sup>89</sup>Y( $\alpha$ ,3n $\gamma$ ),<sup>90</sup>Zr(<sup>3</sup>He,p2n $\gamma$ ) 1981Fi02

| History         |                             |                   |                        |  |  |  |  |  |  |
|-----------------|-----------------------------|-------------------|------------------------|--|--|--|--|--|--|
| Туре            | Author                      | Citation          | Literature Cutoff Date |  |  |  |  |  |  |
| Full Evaluation | S. K. Basu, E. A. Mccutchan | NDS 165, 1 (2020) | 1-Mar-2020             |  |  |  |  |  |  |

1981Fi02:  $E(\alpha)=35$  MeV.  $E(^{3}He)=33-43$  MeV. Measured  $\gamma(\theta)$ ,  $n\gamma$ ,  $\gamma\gamma$  and delayed  $\gamma\gamma$  coin, excitation function (1981Fi02).

## <sup>90</sup>Nb Levels

| E(level) <sup>†</sup> | J <sup>π</sup> ‡ | T <sub>1/2</sub> | Comments                                                 |
|-----------------------|------------------|------------------|----------------------------------------------------------|
| 0                     | 8+               |                  |                                                          |
| 122.6 <i>1</i>        | 6+               |                  |                                                          |
| 124.9 5               | 4-               | 18.81 s 6        | $T_{1/2}$ : from the Adopted Levels.                     |
| 171.1 <i>1</i>        | 7+               | <1 µs            | $T_{1/2}$ : from absence of delayed $\gamma$ (1981Fi02). |
| 285.5 2               | 5+               |                  |                                                          |
| 328.0 6               | 4+               |                  |                                                          |
| 362.6 5               | 5-               |                  |                                                          |
| 651.0 6               | 3+               |                  |                                                          |
| 812.9 <i>1</i>        | 9+               |                  |                                                          |
| 854.0 12              | 2+               |                  |                                                          |
| 1809.1 2              | 9-               |                  |                                                          |
| 1880.2 2              | 11-              | 0.44 µs 2        | $T_{1/2}$ : from delayed $\gamma\gamma$ coin (1981Fi02). |
| 1985.6 <i>3</i>       | $10^{+}$         |                  |                                                          |
| 2487.3 <i>3</i>       | $(12^{-})$       |                  |                                                          |
| 3071.8 6              |                  |                  |                                                          |

<sup>†</sup> From a least-squares fit to  $E\gamma$ , by evaluators. <sup>‡</sup> As given by 1981Fi02 from  $\gamma(\theta)$ , lifetimes and previous work.

 $\gamma(^{90}\text{Nb})$ 

| Eγ             | $I_{\gamma}^{\dagger}$ | $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $\mathbf{E}_{f}$ | $J_f^{\pi}$ Mult. <sup>‡</sup> | Comments                                                                   |
|----------------|------------------------|---------------|----------------------|------------------|--------------------------------|----------------------------------------------------------------------------|
| (2.3 4)        |                        | 124.9         | 4-                   | 122.6 6          | 5+                             | $E_{\gamma}$ : from the Adopted Levels.                                    |
| 42.5 5         | 0.7 4                  | 328.0         | 4+                   | 285.5 5          | 5 <sup>+</sup> D               | $I_{\gamma}$ : from authors' $I(\gamma + ce) = 2 I$ and $\alpha$ value.    |
|                |                        |               |                      |                  |                                | Mult.: $A_2 = -0.05 2$ , $A_4 = -0.02 3$ (1981Fi02).                       |
| 71.1 2         | 1.8 5                  | 1880.2        | 11-                  | 1809.1 9         | )- Q                           | Mult.: $A_2 = +0.25 2$ , $A_4 = -0.03 2$ (1981Fi02).                       |
| 100 ( 1        | 51.2                   | 100 (         | < ±                  | 0                | 24                             | $I_{\gamma}$ : from authors' $I(\gamma + ce) = 10 \ 3$ and $\alpha$ value. |
| 122.6 1        | 513                    | 122.6         | $6^{+}$              | 0 8              | 3 <sup>+</sup>                 |                                                                            |
| 162.9 <i>1</i> | 20 1                   | 285.5         | $5^{+}$              | 122.6 6          | 6 <sup>+</sup> D               | Mult.: $A_2 = -0.08 \ l$ , $A_4 = +0.00 \ l$ (1981Fi02).                   |
| 171.1 <i>1</i> | 22 1                   | 171.1         | 7+                   | 0 8              | 8+ D                           | Mult.: $A_2 = -0.12 I$ , $A_4 = +0.03 2$ (1981Fi02).                       |
| 203.0 10       | 1.2 8                  | 854.0         | 2+                   | 651.0 3          | 3+                             | $A_2 = -0.01$ 7, $A_4 = -0.1$ 1 (1981Fi02).                                |
| 237.7 1        | 22 1                   | 362.6         | 5-                   | 124.9 4          | 4− D                           | Mult.: $A_2 = -0.26 2$ , $A_4 = +0.03 2$ (1981Fi02).                       |
| 323.0 2        | 6.6 4                  | 651.0         | 3+                   | 328.0 4          | <b>1</b> <sup>+</sup>          | $A_2 = +0.03 3$ , $A_4 = +0.01 4$ (1981Fi02).                              |
| 584.5 5        | ≈3                     | 3071.8        |                      | 2487.3 (         | (12 <sup>-</sup> )             |                                                                            |
| 607.1 2        | 12 2                   | 2487.3        | $(12^{-})$           | 1880.2 1         | l1- D                          | Mult.: $A_2 = -0.71$ 7, $A_4 = +0.2$ 2 (1981Fi02).                         |
| 812.9 <i>1</i> | 100                    | 812.9         | 9+                   | 0 8              | 8+ D                           | Mult.: $A_2 = -0.47 \ I$ , $A_4 = +0.03 \ I$ (1981Fi02).                   |
| 996.2 2        | 21 <i>I</i>            | 1809.1        | 9-                   | 812.9 9          | ) <sup>+</sup>                 | $A_2 = +0.296, A_4 = -0.127$ (1981Fi02).                                   |
| 1067.3 2       | 27 1                   | 1880.2        | 11-                  | 812.9 9          | 9 <sup>+</sup> Q               | Mult.: $A_2 = +0.33 \ 3$ , $A_4 = -0.08 \ 5 \ (1981Fi02)$ .                |
| 1172.7 2       | 91                     | 1985.6        | $10^{+}$             | 812.9 9          | )+ D                           | Mult.: $A_2 = -0.23$ 7, $A_4 = -0.1$ <i>I</i> (1981Fi02).                  |

<sup>†</sup> Deduced from  $\gamma(\theta)$  data following ( $\alpha$ ,3n $\gamma$ ) reaction at 35 MeV.

<sup>‡</sup> From  $\gamma(\theta)$  measurements in 1981Fi02.



 $^{90}_{41}\text{Nb}_{49}$