⁶⁶Zn(²⁸Si,2p2nγ) 1992Si03,1994Da15

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	S. K. Basu, E. A. Mccutchan	NDS 165, 1 (2020)	1-Mar-2020				

1992Si03: ⁶⁶Zn(²⁸Si,2p2n γ) reaction; E=90-120 MeV. Measured E γ , I γ , $\gamma\gamma$ coin, $\gamma\gamma(\theta)$, $\gamma(\theta)$ at 15°, 30°, 44°, 60° and 90°. An array of 5 Compton-suppressed HPGe spectrometers.

1994Da15: 66 Zn(28 Si,2p2n γ) reaction; E=115 MeV. Measured excited level T_{1/2} using the recoil-distance method.

⁹⁰Mo Levels

⁹⁰Mo seems to be a transitional nucleus which exhibits both single-particle nature (even-parity states) and the features of the collective vibration (odd-parity states).

E(level)	Jπ‡	E(level)	Jπ‡	$T_{1/2}^{\dagger}$	E(level)	Jπ‡	$T_{1/2}^{\dagger}$
0.0#	0^{+}	4079.7 [#] 8	10+		5701.3 ^{&} 8	13-	<0.7 ps
948.2 [#] 3	2^{+}	4193.4 [@] 8	10^{+}		6149.6 8	15^{+}	<1.4 ps
2002.6 [#] 5	4^{+}	4300.3 ^{&} 7	9-		6644.6 <mark>&</mark> 8	15^{-}	<0.7 ps
2549.6 <mark>&</mark> 5	5-	4556.8 [#] 8	12+		6747.9 [#] 8	16^{+}	
2812.6 [#] 5	6+	4844.3 ^{&} 7	11-	<0.7 ps	7028.8? 9	17^{+}	
2875.4 [#] 8	8^+	5378.6 8	13+		7516.6 <mark>&</mark> 8	17^{-}	5.5 ps 7
3106.8 [@] 8	8+	5623.0 8	(14^{+})		7684.0? 9	18^{-}	
3368.6 <mark>&</mark> 6	7-	5626.5 [#] 8	14^{+}	4.8 ps 14			

[†] Recoil-distance method (1994Da15).

[‡] Based on $\gamma(\theta)$ and $\gamma\gamma(\theta)$ (1992Si03).

[#] Seq.(A): Ground state sequence.

[@] Seq.(B): Positive-parity sequence.

[&] Seq.(C): Negative-parity sequence.

$\gamma(^{90}\text{Mo})$

Evaluators changed order of the 544-819-930 cascade based on the level scheme given by 1992Ka27 in ${}^{58}Ni({}^{36}Ar, 4p\gamma)$.

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	Comments
62.7	60.8 9	2875.4	8+	2812.6 6+		
167.4 <i>3</i>	7.3 3	7684.0?	18-	7516.6 17-	(D+Q)	$A_2 = -0.17 2, A_4 = -0.01 1.$
231.3 3	49.5 6	3106.8	8+	2875.4 8+	D+Q	$A_2 = +0.35 I, A_4 = -0.02 I.$
244.2 3	13.1 2	5623.0	(14^{+})	5378.6 13+	D	$A_2 = -0.42 2, A_4 = +0.15 1.$
247.7 3	13.5 2	5626.5	14+	5378.6 13+	(D+Q)	$A_2 = -0.07 2, A_4 = +0.09 1.$
263.3 3	9.5 4	2812.6	6+	2549.6 5-		
280.9 3	2.2 1	7028.8?	17^{+}	6747.9 16+	(D+Q)	$A_2 = -0.51 \ 3, \ A_4 = +0.11 \ 1.$
363.4 <i>3</i>	24.3 4	4556.8	12^{+}	4193.4 10+	Q	$A_2 = +0.30 2$, $A_4 = -0.33 1$.
477.1 3	37.8 5	4556.8	12^{+}	4079.7 10+	Q	$A_2 = +0.33 I, A_4 = -0.18 I.$
523.2 3	8.7 5	6149.6	15^{+}	5626.5 14+	(D+Q)	$A_2 = -0.62 \ 3, \ A_4 = +0.12 \ 1.$
526.4 3	3.4 <i>3</i>	6149.6	15^{+}	5623.0 (14 ⁺)	(D+Q)	$A_2 = -0.775, A_4 = +0.302.$
544.0 3	14.7 4	4844.3	11-	4300.3 9-	Q	$A_2 = +0.02 \ 3, \ A_4 = -0.12 \ 1.$
						E_{γ} : placed by 1992Si03 from a 4026 (9 ⁻) level.
547.3 <i>3</i>	28.1 6	2549.6	5-	2002.6 4+	(D)	$A_2 = -0.27 2, A_4 = -0.09 1.$
598.2 <i>3</i>	16.5 6	6747.9	16^{+}	6149.6 15+	(D+Q)	$A_2 = -0.20 \ 3, \ A_4 = +0.04 \ 1.$

Continued on next page (footnotes at end of table)

⁶⁶Zn(²⁸Si,2p2n γ) 1992Si03,1994Da15 (continued)

$\gamma(^{90}Mo)$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [‡]	Comments
768.6 3	5.5 4	7516.6	17-	6747.9 16+	(D)	$A_2 = -0.45 5, A_4 = -0.04 2.$
809.7 <i>3</i>	76.3 11	2812.6	6+	2002.6 4+	Q	$A_2 = +0.24 3, A_4 = -0.08 1.$
819.0 <i>3</i>	9.7 4	3368.6	7-	2549.6 5-	Q	$A_2 = +0.41 4$, $A_4 = -0.16 2$.
						E_{γ} : placed by 1992Si03 from a 4845 (11 ⁻) level.
821.4 <i>3</i>	17.4 5	5378.6	13^{+}	4556.8 12+	(D+Q)	$A_2 = -0.08 2, A_4 = -0.11 1.$
857.0 <i>3</i>	10.2 6	5701.3	13-	4844.3 11-	Q	$A_2 = +0.225, A_4 = -0.162.$
872.1 <i>3</i>	14.6 5	7516.6	17^{-}	6644.6 15-	Q	$A_2 = +0.43 4, A_4 = -0.22 2.$
931.7 <i>3</i>	30.0 8	4300.3	9-	3368.6 7-	Q	$A_2 = +0.23 \ 3, \ A_4 = -0.21 \ 1.$
						E_{γ} : placed by 1992Si03 from a 3482 (7 ⁻) level.
943.4 <i>3</i>	13.4 4	6644.6	15-	5701.3 13-	Q	$A_2 = +0.17 4$, $A_4 = -0.07 1$.
948.2 <i>3</i>	100.0 14	948.2	2^{+}	$0.0 \ 0^+$	Q	$A_2 = +0.23 \ 3, \ A_4 = -0.08 \ 1.$
972.9 <i>3</i>	44.3 9	4079.7	10^{+}	3106.8 8+	Q	$A_2 = +0.36 \ 3, \ A_4 = -0.15 \ 1.$
1018.0 3	5.5 6	6644.6	15^{-}	5626.5 14+	(D)	$A_2 = +0.09 3$, $A_4 = +0.19 2$.
1054.4 3	97.9 <i>14</i>	2002.6	4+	948.2 2+	Q	$A_2 = +0.30 \ 3, \ A_4 = -0.07 \ 1.$
1070.0 <i>3</i>	47.1 2	5626.5	14^{+}	4556.8 12+	Q	$A_2 = +0.30 2$, $A_4 = -0.13 1$.
1144.5 <i>3</i>	5.3 4	5701.3	13-	4556.8 12+	(D)	$A_2 = -0.17 II, A_4 = +0.29 5.$
1318.0 <i>3</i>	26.9 8	4193.4	10^{+}	2875.4 8+	Q	$A_2 = +0.24 4$, $A_4 = -0.08 2$.

[†] From 1992Si03. [‡] From $\gamma(\theta)$ and $\gamma\gamma(\theta)$ (1992Si03).

⁹⁰₄₂Mo₄₈

⁶⁶Zn(²⁸Si,2p2nγ) 1992Si03,1994Da15

⁹⁰₄₂Mo₄₈