${ }^{9} \mathbf{B e}\left({ }^{9} \mathrm{C},{ }^{9} \mathrm{C}\right) \quad 2017 \mathrm{Br} 07$

History			
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	J. H. Kelley, B. Grees	ENSDF	31-July-2020

2017Br07: ${ }^{9} \mathrm{Be}\left({ }^{9} \mathrm{C},{ }^{9} \mathrm{C}\right)$ inelastic scattering to one- and two-proton unbound levels in ${ }^{9} \mathrm{C}$ using a $68 \mathrm{MeV} /$ nucleon ${ }^{9} \mathrm{C}$ beam, from the MSU/A1900. The beam impinged on a 1 mm thick ${ }^{9}$ Be target that was surrounded by the HiRA array, which comprised a set of $1464 \mathrm{~mm} \times 64 \mathrm{~mm}$ position sensitive $\Delta \mathrm{E}$-E telescopes that covered the forward direction of the outgoing beam $\left(\theta_{\text {lab }} \approx 2^{\circ}\right.$ to 13.9°). The telescopes were arranged in vertical towers with a 2-3-4-3-2 configuration where the central tower had a gap between the upper and lower two telescopes to permit the beam a downstream exit at $\theta=0^{\circ}$. In addition, $158 \mathrm{CsI}(\mathrm{Na})$ crystals from the CAESAR array covered polar angles between $\theta_{\mathrm{lab}}=57.5^{\circ}$ and 142.4° and measured the coincident γ-ray deexcitations.
Analysis of the $\mathrm{p}+{ }^{8} \mathrm{~B}$ events revealed levels corresponding to decay of the known first and second excited states of ${ }^{9} \mathrm{C}$ to ${ }^{8} \mathrm{~B}_{\text {g.s. }}$. Further analysis of the $2 \mathrm{p}+{ }^{7} \mathrm{Be}$ events revealed a broad asymmetric peak around $\mathrm{E}_{\mathrm{x}}=5.5 \mathrm{MeV}$, which was found to include ${ }^{9} \mathrm{C}$ states at $E_{x} \approx 4.4$ and 5.8 MeV that decay sequentially via ${ }^{8} B$ states at $\mathrm{E}_{\mathrm{x}}=0.77$ and 2.32 MeV , respectively.
Finally, the authors evaluated the ${ }^{9} \mathrm{C}^{*}(4.4,5.8)$ states along with ${ }^{9} \mathrm{~B}^{*}(19.25,20.42)$ states that they measured in ${ }^{9} \mathrm{Be}\left({ }^{9} \mathrm{C},{ }^{9} \mathrm{~B}\right)$ reactions. Their analysis of the Coulomb-displacement energies suggests the claim that ${ }^{9} \mathrm{C}_{4.4}-{ }^{9} \mathrm{~B}_{19.25}$ and ${ }^{9} \mathrm{C}_{5.8}-{ }^{9} \mathrm{~B}_{20.42}$ are analog states.
${ }^{9}$ C Levels

E(level)	J^{π}	Γ	Comments
$2218^{\dagger} 11$	$1 / 2^{-\dagger}$	52 keV 11	T=3/2
			Decays via $\mathrm{p}+{ }^{8} \mathrm{~B}$ g.s.
354920	5/2- ${ }^{\text {+ }}$	673 keV 50	T=3/2
440040	$\left(1 / 2^{+}, 5 / 2^{+}\right)$	2.75 MeV 11	$\begin{aligned} & \text { Decays via } \mathrm{p}+{ }^{8} \mathrm{~B}_{\text {g.s. }} \\ & \mathrm{T}=3 / 2 \end{aligned}$
			Decays via $\mathrm{p}+{ }^{8} \mathrm{~B}^{*}\left(770 \mathrm{keV}: \mathrm{J}^{\pi}=1^{+}\right) \rightarrow 2 \mathrm{p}+{ }^{7} \mathrm{Be}$. Shell model and R-matrix analysis of the Γ suggest $\mathrm{J}^{\pi}=\left(1 / 2^{+}, 5 / 2^{+}\right)$.
575040		601 keV 50	$\mathrm{T}=3 / 2$ Decays via $\mathrm{p}+{ }^{8} \mathrm{~B} *\left(2320 \mathrm{keV}: \mathrm{J}^{\pi}=3^{+}\right) \rightarrow 2 \mathrm{p}+{ }^{7} \mathrm{Be}$.

[^0]
[^0]: \dagger From (1974Be66).

 * From 2007Ro01.

