⁹Be(⁹C,⁹C) 2017Br07

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	J. H. Kelley, B. Grees	ENSDF	31-July-2020		

2017Br07: ⁹Be(⁹C,⁹C) inelastic scattering to one- and two-proton unbound levels in ⁹C using a 68 MeV/nucleon ⁹C beam, from the MSU/A1900. The beam impinged on a 1 mm thick ⁹Be target that was surrounded by the HiRA array, which comprised a set of 14 64 mm × 64 mm position sensitive Δ E-E telescopes that covered the forward direction of the outgoing beam ($\theta_{lab} \approx 2^{\circ}$ to 13.9°). The telescopes were arranged in vertical towers with a 2-3-4-3-2 configuration where the central tower had a gap between the upper and lower two telescopes to permit the beam a downstream exit at $\theta=0^{\circ}$. In addition, 158 CsI(Na) crystals from the CAESAR array covered polar angles between $\theta_{lab}=57.5^{\circ}$ and 142.4° and measured the coincident γ -ray deexcitations. Analysis of the p+⁸B events revealed levels corresponding to decay of the known first and second excited states of ⁹C to ⁸B_{g.s.}. Further analysis of the 2p+⁷Be events revealed a broad asymmetric peak around E_x=5.5 MeV, which was found to include ⁹C

states at $E_x \approx 4.4$ and 5.8 MeV that decay sequentially via ⁸B states at $E_x=0.77$ and 2.32 MeV, respectively. Finally, the authors evaluated the ⁹C*(4.4,5.8) states along with ⁹B*(19.25,20.42) states that they measured in ⁹Be(⁹C,⁹B)

reactions. Their analysis of the Coulomb-displacement energies suggests the claim that ${}^{9}C_{4,4}$ - ${}^{9}B_{19,25}$ and ${}^{9}C_{5,8}$ - ${}^{9}B_{20,42}$ are analog states.

⁹C Levels

E(level)	J^{π}	Г	Comments
2218 [†] 11	1/2-†	52 keV 11	T=3/2 Decays via $p+^{8}B_{g.s.}$
3549 20	5/2-‡	673 keV 50	T=3/2 Decays via p+ ⁸ B _{g.s.}
4400 40	(1/2 ⁺ ,5/2 ⁺)	2.75 MeV 11	Decays via p+ $^{8}B^{*}(770 \text{ keV}; J^{\pi}=1^{+})\rightarrow 2p+^{7}Be.$
5750 40		601 keV 50	Shell model and R-matrix analysis of the Γ suggest $J^{\pi} = (1/2^+, 5/2^+)$. T=3/2 Decays via p+ ⁸ B*(2320 keV: $J^{\pi} = 3^+) \rightarrow 2p+^7Be$.

[†] From (1974Be66).

[‡] From 2007Ro01.