⁷Be(³He,n) **1971Mo01**

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	J. H. Kelley, B. Grees	ENSDF	31-July-2020		

1971Mo01: The mass and half-life of ${}^{9}C$ were measured using at the Office of Naval Research-California Institute of Technology tandem Van de Graff accelerator. The ${}^{7}Be({}^{3}He,n){}^{9}C$, at \approx 9-12 MeV was used to produce the ${}^{9}C$ ions on a target mounted on a solenoid-operated arm that switched the activation position and the counting position. The activation period was followed by a counting period that was varied between 0.9 and 2.2 s. The event rate data were binned in 10 ms time bins. Because of the high background rate from the ${}^{7}Be$ target, a silicon ΔE -E telescope was used to detect β -p events during the counting period. The half-life was measured as 126.5 ms 2.

The ${}^{7}\text{Be}({}^{3}\text{He,n}){}^{9}\text{C}$ reaction threshold was also determined as 8980 keV 5, which corresponds to mass excess $\Delta M({}^{9}\text{C})=28907$ keV 4. The author analyzed the A=9 isospin-quartet states to test the quadratic mass formula and discussed the results and implications.

⁹C Levels

Comments

E(level)	T _{1/2}	
0	126.5 ms 2	E(level): $\Delta M = 28907$ keV 4.

 ${}^{9}_{6}C_{3}$