¹H(⁹C,P) **2013Ma23**

History			
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. H. Kelley, B. Grees	ENSDF	31-July-2020

2013Ma23: XUNDL data set compiled by TUNL (2013). The authors measured the angular distribution of ${}^{9}C(p,p)$ elastic scattering in inverse kinematics at $E({}^{9}C)\approx300$ MeV/nucleon. Results were analyzed to evaluate the ${}^{9}C$ matter root-mean-square radius ($R_{matter}^{r.m.s.}$).

A beam of $\approx 277-300$ MeV/nucleon ⁹C ions, from the Chiba fragment separator facility at the Heavy Ion Medical Accelerator, impinged on a 5 mm thick solid hydrogen target. Scattered ⁹C nuclei, which have no bound excited states, were detected in a downstream plastic scintillator detector while recoiling protons were identified and measured in either of the two recoil proton spectrometer telescopes comprised of a recoil drift chamber, a plastic scintillator and a set of NaI(Tl) calorimeters. Selection of "exclusive" events with protons in coincidence with scattered ⁹C nuclei permitted isolation of elastic events.

Proton angular distributions were deduced and analyzed over the range $\theta_{lab}=65^{\circ}-85^{\circ}$. The $R_{matter}^{r.m.s.}=2.43$ fm +55-28 is deduced.

See another analysis of these data in (2014Ra12).

Theory: 2009Ib01, 2009Ib03: Calculations of the angular distributions of cross section and analyzing power were carried out at 60 and 700 MeV/nucleon using a Glauber diffraction theory model.

⁹C Levels

E(level)

0.0

 $R_{matter}^{r.m.s.} = 2.43 \text{ fm} + 55-28.$

Comments