¹H(⁸B,P) 2007Ro01,2019Ho14

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	J. H. Kelley, B. Grees	ENSDF	31-July-2020				

2007Ro01: Measured the elastic scattering of ⁸B on protons using the TwinSol radioactive nuclear beam (RNB) facility at University of Notre Dame. A 29 MeV/nucleon ⁸B beam, produced via ³He(⁶Li,⁸B) reactions, impinged on a 9 mg/cm² stopping thickness CH₂ target. Scattered protons, emerging in the forward direction were detected using a set of two Δ E-E Si detectors placed at θ =7.7°. The data were analyzed using standard thick target inverse kinematics techniques to obtain the p+⁸B excitation function for E_x(⁹C)≈1.9-4.5 MeV.

An R-matrix analysis was implemented to interpret the excitation function. In addition to the $J^{\pi}=1/2^{-} E_x=2.22$ MeV first excited state, inclusion of a $J^{\pi}=5/2^{-}$ state at $E_x=3.6$ MeV 2 with $\Gamma=1.4$ MeV 5 was necessary to produce agreement between the experimental data and the fit. This $J^{\pi}=5/2^{-}$ state has a single-particle nature with a spectroscopic factor of S=0.77 25 which is consistent with theoretical predictions. The fit was somewhat improved with the inclusion of an additional $J^{\pi}=3/2^{-}$ state at $E_x\approx4.1$ MeV having $\Gamma\approx1.3$ MeV; the followup work (2019Ho14) by the same group does not support the existence of this state. A continuum shell model analysis of the (2007Ro01) data is presented in (2009Vo03).

2019Ho14: Studied level structure of ${}^{9}C$ using ${}^{8}\beta^{+}p$ resonant elastic scattering using the TexAT detector at Texas A&M. A ${}^{8}B$ beam was produced via ${}^{6}Li({}^{3}He,n){}^{8}B$ reaction and scattered from target methane gas (CH₄). An R-matrix analysis of the E_x= 1.8-6.3 MeV excitation function was carried out, but the data couldn't be reproduced with only the inclusion of previously reported levels. The data does not support existence of the suggested J^{π}=3/2⁻ state at E_x=4.1 MeV (2007Ro01) nor does it support the existence of the E_x=3.30 MeV 5 state (1991Go13). In addition to the E_x=2.2 and 3.6 MeV states reported in (2007Ro01), a new 5/2⁺ state at E_x=4.3 MeV 3 with Γ =4.0 ${}^{+2.0}_{-1.4}$ MeV was observed. This new state determines the location of the 2*s* shell in the α =9, T=3/2 system. The R-Matrix fit is also improved with the inclusion of a J^{π}=7/2⁻ state at E_x≈6.4 MeV; however, since this

lies outside of the measured excitation function this suggestion remains tentative.

Related experimental studies: A study of the the reaction, via the inverse Coulomb dissociation reaction was carried out ar RIPS/RIKEN using a 65 MeV/nucleon ⁹C beam on a Pb target. The results are analyzed to estimate the astrophysical S-factor (2000MoZP, 2002HiZZ, 2003Mo23, 2003Mo28, 2003MoZY). See other relevant theoretical discussion in (2005Ty02, 2012Fu07). Theory:

The reaction rates for the astrophysical hot p-p chain reactions, ${}^{8}B(p,\gamma){}^{9}C$ and ${}^{9}C(\alpha,p){}^{12}N$, are estimated in (1989Wi24).

A microscopic cluster model analysis of the E1 and E2 components of ${}^{8}B(p,\gamma){}^{9}C$ and ${}^{8}Li(n,\gamma){}^{9}Li$ is given in (1999De03).

A potential model was developed in (2003Mo12) to analyze the ${}^{8}B(p,\gamma){}^{9}C$ and ${}^{8}Li(n,\gamma){}^{9}Li$ capture cross sections.

- In (2002Tr14, 2006Tr07) the ⁹C 1-proton removal data of (1997Bl08)(C, Al, Sn, Pb targets) is analyzed to obtain the Asymptotic Normalization Coefficients, $C^2(p_{3/2}) + C^2(p_{1/2})=1.22 \text{ fm}^{-1}$ 13, and then evaluated the astrophysical S-factor. See also (2003Tr09).
- In (2005Gu29, 2005Li35) the ²H(⁸Li,p) reation was measured to obtain the ⁹Li \rightarrow ⁸Li+n ANC; this value was used to estimate the ANC for ⁹C \rightarrow ⁸ β +p, and the astrophysical S-factor was analyzed. See additional comments in (2008Ti09, 2010Ti04, 2011No03, 2013Ti05).
- A single-particle potential model was developed in (2010Hu11) to analyze ANCs and spectroscopic factors in a broad range of capture reactions.

⁹C Levels

E(level)	J^{π}	Г	L#	S	Comments
2218 [†]	1/2-†	52 keV	1		Γ : From (2017Br07), the R-matrix analysis was found to be rather insensitive to the width parameter.
3.6×10 ^{3‡} 2	5/2-‡	1.1 MeV 7	1	0.8 2	 Γ: From (2019Ho14). The standard deviation is 300 keV; see further discussion in the text including discussion on the ⁹Li analog state. An earlier analysis in (2007Ro01) found Γ=1.4 MeV 5. S: From (2007Ro01, 2019Ho14); see further discussion in (2009Ti11).
$4.3 \times 10^{3\#} 3$ $\approx 6.4 \times 10^{3}?^{\#}$	5/2+# 7/2 ^{-#}	$4.0^{\#}$ MeV +20-14 $\approx 1.1^{\#}$ MeV	0 1		

 ${}_{6}^{9}C_{3}$

⁹₆C₃

¹**H**(⁸**B**,**P**) 2007Ro01,2019Ho14 (continued)

⁹C Levels (continued)

[†] From (1974Be66). [‡] From (2007Ro01). [#] From (2019Ho14).