${}^{12}C(\mu^{-}, {}^{9}C), {}^{14}N(\mu^{-}, {}^{9}C)$ 2000Ha33

History			
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. H. Kelley, B. Grees	ENSDF	31-July-2020

2000Ha33: The yield of ⁹C and other radioisotopes, produced by energetic muons and their secondaries, was measured at the SPS muon beam at CERN. The measurements, carried out at $E(\mu)=100$ and 190 MeV, are aimed at understanding backgrounds at BOREXINO and KAMLAND.

2010Ab05: The authors investigated the yield of radioisotopes, including ⁹C nuclei, produced in the KamLAND detector by cosmic μ showers. They suggest ¹²C(π^- , ³H) as the primary production mechanism; though in (2016Ab02) the ¹⁴N(μ^- , ν 5n) reaction is indicated. The subsequent $\beta^+ p$ and $\beta^+ \alpha$ decay of ⁹C gives rise to a high-energy backgrounds in the detector.

2016Ab02: The authors investigated the yield of radioisotopes produced by cosmic μ in the Double Chooz detector. The

 $^{14}N(\mu^-, v5n)$, $^{16}O(\mu^-, vd5n)$ and $^{16}O(\mu^-, vp6n)$ reactions are suggested as the primary reactions producing ⁹C.

2019Zh29: The FLUKA Monte Carlo code was used to estimate μ induced activity in the DUNE detector.

⁹C Levels

 $\frac{\mathrm{E(level)}}{\mathrm{0}}$

 ${}^{9}_{6}C_{3}$