¹²C(⁹C,X) **1996Oz01**

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. H. Kelley, B. Grees	ENSDF	31-July-2020

Reaction and interaction cross section measurements including Be, C, Al, Si, Sn and Pb targets.

1996Oz01: Measured total interaction σ of E \approx 790 MeV ⁹C on Be, C and Al target at LBNL using the transmission method. Deduced point-proton $r_{r.m.s}^{p}$ =2.48 fm 3, effective charge $r_{r.m.s}^{ch}$ =2.61 fm 3, point-neutron $r_{r.m.s}^{n}$ =2.28 fm 3 and point-nucleon $r_{r.m.s}^{m}$ =2.42 fm 3.

1997Bl08: Measured $\sigma_{\text{interaction}}$, σ_{1p} and σ_{2p} on carbon, ²⁷Al, tin and lead targets using 285 MeV/nucleon ⁹C ions at GSI.

2000MoZP, 2002HiZZ, 2003Mo23, 2003Mo28, 2003MoZY: A study of the the reaction, via the inverse Coulomb dissociation reaction was carried out ar RIPS/RIKEN using a 65 MeV/nucleon ⁹C beam on a Pb target. The results are analyzed to estimate the astrophysical S-factor. See other relevant theoretical discussion in (2005Ty02, 2012Fu07).

- 2003En05: Measured σ_{1p} and σ_{2p} at 78 MeV/nucleon on a carbon target at the MSU/NSCL. Deduced C²S=0.94 from analysis of σ_{1p} . They also deduced the Asymptotic Normalization Coefficient, C²₁=1.27 fm⁻¹ 10, and they evaluated the ⁸B(p, γ) astrophysical reaction rate coefficient S₁₈(0)=49 eV·b 4.
- 2004Wa06: Measured σ_{1p} and σ_{2p} on a Si target in the range of E(⁹C)=28-68 MeV/nucleon at the MSU/NSCL. Compared with shell model calculations using eikonal reaction theory. In the range of E(⁹C)=28-51 MeV/nucleon, σ_{2p} =198 mb *16* while σ_{1p} =77 mb *11*, suggesting ⁹C may be a 2-proton halo nucleus.
- 2006Wa18: Measured the reaction and proton removal $\sigma(E)$ for ²⁸Si(⁹C,X) for E=15-53 MeV/nucleon at the MSU/NSCL. Analyzed the cross section data using a simple Glauber model, and assuming harmonic oscillator wavefuction densities they deduced a matter radius $r_{r.m.s.}^{m}$ =2.71 fm 32. They compared with the results of (1996Oz01). *Theory:*

2003Ti10: Analyzed p-p correlations and single-particle overlap integrals. Discussed ${}^{9}C$ in terms of a potential 2p-halo nucleus. 2017Ah08: Glauber model analysis of ${}^{12}C({}^{9}C,X)$ at 720 MeV/nucleon to obtain the charge and matter radii.

2017 Mos. Orabler induct analysis of -C(-C, x) at 120 we vinterior to obtain the charge and matter radii.

2017Ka45: Matter and charge radii, deduced from an optical potential model, were used to calculate the reaction cross sections of ${}^{9}C$ and other carbon isotopes at E_{p} =71-800 MeV.

⁹C Levels

E(level)	C^2S	Comments
0	0.94	$r_{r.m.s.}^{m}$ =2.42 fm 3 (1996Oz01), see also $r_{r.m.s.}^{m}$ =2.71 fm 32 (2006Wa18). C ² S: for (⁹ C, ⁸ B) from (2003En05); they also deduced the Asymptotic Normalization Coefficient, C ₁ ² =1.27 fm ⁻¹