⁹C β⁺ decay 2004Ti06,2000Ge09,2001Be51

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	J. H. Kellev, C. G. Sheu, J. L. Godwin, et al.	NP A745 155 (2004)	31-Mar-2004					

Parent: ⁹C: E=0.0; $J^{\pi}=(3/2^{-})$; $T_{1/2}=126.5$ ms 9; $Q(\beta^{+})=16494.8$ 23; % β^{+} decay=100.0

1970Wi20: ${}^{9}C(\beta^{+})$, analyzed available log *ft* data.

1972Es05: ${}^{9}C(\beta^{+})$, measured β -delayed P-spectrum, T_{1/2}.

1988Mi03: ${}^{9}C(\beta^{+})$, measured β -delayed E_{P} , I_{P} , β -delayed E_{α} , I_{α} , β - α -P-coin. Deduced log *ft*. ${}^{9}B$ levels deduced I_{β} , Gamow-Teller transition strengths, comparison with other data.

1993Ch06: ${}^{9}C(\beta^{+})$, analyzed Gamow-Teller β -decay data. Deduced log *ft*, β -decay matrix elements.

2000Ge09: ${}^{9}C(\beta^{+})$, measured E_{β} , I_{β} , β -delayed particle spectra, coincidences, angular correlations. ${}^{9}B$ levels deduced excitation and decay branching ratios.

2001Be51: ${}^{9}C(\beta^{+})$, measured β -delayed E_P, E_{α}, P- α - α -coin, angular correlations. ${}^{9}B$ deduced β -branching strengths, decay mechanism features. A=9, deduced β -decay asymmetry.

2001Bu05: ${}^{9}C(\beta^{+})$, analyzed β -spectra, β -delayed particle spectra, coincidences. ${}^{9}B$ deduced levels, J, π , Gamow-Teller strengths. Multichannel, multistate R-matrix approach, astrophysical implications discussed. Shell model calculations.

2004Bo22: ${}^{9}C(\beta^{+})$, analyzed β -delayed E_{α} , E_{P} , E_{N} , angular correlations. ${}^{9}B$ deduced level energies, widths, decay branching ratios.

 $\%\beta^+p$ and $\%\beta^+\alpha$ from (2004Ti06), where the ⁹C branch feeding the ⁹B g.s. was taken from 2001Be51, and branches feeding other levels were taken from (2000Ge09) and renormalized to give a 100% feeding. For $\%\beta^+p$ and $\%\beta^+\alpha$ feedings for decay from excited states the branching ratios were taken from (2000Ge09). (2000Ge09) also found a large "BACKGROUND" branch (approx 4%) which was attributed to tails from higher states. $\%\beta^+p=61.6$ and $\%\beta^+\alpha=38.4$.

⁹B Levels

E(level)	$J^{\pi T}$	T _{1/2}
0.0	$3/2^{-}$	0.54 keV 21
2345 11	5/2-	81 keV 5
2.78×10 ³ 16	$1/2^{-}$	3.13 MeV 20
12160 40	5/2-	455 keV 20
14010 70		0.39 MeV 11
14655.0 25	$3/2^{-}$	377 eV 38

[†] From Adopted Levels.

ε, β^+ radiations

E(decay)	E(level)	$I\beta^+$	Ιε [†]	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
(1840 4)	14655.0	0.0100	3.8×10^{-5}	3.3	0.010	av E β =324.2 15; ε K=0.00365 5; ε L=0.0001865 2
$(2.48 \times 10^3 7)$	14010	0.16 2	1.0×10^{-4}	3.16 11	0.16 2	av E β =610 32; ε K= 6.12×10 ⁻⁰⁴ 98; ε L= 3.12×10 ⁻⁰⁵ 50
$(4.33 \times 10^3 \ 4)$	12160	5.9 6	3.3×10 ⁻⁴	3.14 5	5.9 6	av E β =1482 20; ε K= 5.32×10 ⁻⁰⁵ 20; ε L= 2.71×10 ⁻⁰⁶ 10
$(1.371 \times 10^4 \ 16)$	2780	5.8 6	6.1×10 ⁻⁶	5.87 6	5.8 6	av E β =6117 80; ε K= 9.94×10 ⁻⁰⁷ 38; ε L= 5.08×10 ⁻⁰⁸ 20
(14150 11)	2345	30.4 58	2.9×10^{-5}	5.22 9	30.4 58	av E β =6333.8 56; ε K= 8.997×10 ⁻⁰⁷ 23; ε L= 4.59×10 ⁻⁰⁸ 1
(16494.8 23)	0.0	54.1 <i>15</i>	3.1×10^{-5}	5.318 <i>13</i>	54.1 15	av E β =7502.5 <i>12</i> ; ε K= 5.520×10 ⁻⁰⁷ <i>2</i> ; ε L= 2.818×10 ⁻⁰⁸ <i>I</i>

[†] Absolute intensity per 100 decays.

 ${}_{5}^{9}B_{4}$