76 Ge(18 O,5n γ), 74 Ge(18 O,3n γ) 1986Wa25

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Balraj Singh	NDS 114, 1 (2013)	20-Oct-2012					

Includes 85 Rb(7 Li,3n γ) from 1988Ba11 and 1986Bi09. 1986Wa25: 74 Ge(18 O,3n γ), 76 Ge(18 O,5n γ) E=40 MeV to 80 MeV. Measured E γ , I γ , $\gamma\gamma$, excitation functions, $\gamma(\theta)$, $\gamma($ lin pol), level lifetimes by recoil-distance Doppler-shift (RDDS) and Doppler-shift attenuation (DSA) methods. Main reaction used was $(^{18}\text{O},5n\gamma).$

1988Ba11: 85 Rb(7 Li,3n γ) E=28 MeV. Measured TPAD of 271 γ , deduced g-factor of the 2995 level.

1986Bi09: ⁸⁵Rb(⁷Li,3n γ) E=27 MeV. Measured γ (t) by pulsed beam.

⁸⁹Zr Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	Comments
0.0	9/2+		
1943.72 <i>4</i>	$13/2^{+}$	<7 ^{&} ps	
2121.34 4	$13/2^{-}$	2.23 [@] ns 12	$T_{1/2}$: other: ≤ 3.4 ns 2 (RDDS 1986Wa25).
2150.62 6	$(15/2^{-})$	≤3.4 ns	$T_{1/2}$: ≤ 3.4 ns 2 (RDDS 1986Wa25).
2159.01 9	(17/2 ⁻)	≤3.4 ns	$T_{1/2}$: ≤ 3.4 ns 2 (1986Wa25) (see figure 4 and section 3.1.2). The authors also quote>69 ns in table 2 and<69 ns (from $\gamma\gamma(t)$) in table 4.
2454.6 6	$(15/2)^{-}$	2.5 ps +28-7	
2724.07 6	$17/2^{+}$	11 ^{&} ps 3	
2926.51 7	$(19/2^{-})$		
2995.30 7	21/2+	5.12 [@] ns <i>16</i>	g=0.89 4 (1988Ba11) $T_{1/2}$: other: 5.2 ns 3 (RDDS 1986Wa25). g: TDPAD method. Configuration= $(\pi g_{0,2}^2)_{8+}(\gamma g_{0,2}^{-1}) + (\pi g_{0,2}^2)_{6+}(\gamma g_{0,2}^{-1})$ (1988Ba11).
3111.17 8	$(19/2)^+$	>2.8 ps	$\mathcal{E} = \left(\mathcal{E} \mathcal{G}_{12}^{\prime}, \mathcal{E} \mathcal{G} \mathcal{G}_{12}^{\prime}, \mathcal{E} \mathcal{G} \mathcal{G}_{12}^{\prime}, \mathcal{E} \mathcal{G} \mathcal{G} \mathcal{G} \mathcal{G}$
3576.15 20	$(23/2)^+$	0.35 ps 10	
3/16.9 3	(21/2)	$\leq 0.8 \text{ ps}$	
4277.5 5	$(23/2^{+})$ $(23/2^{-})$	≤0.06 ps	
4735.36 20	25/2+	<6 ^{&} ps	
5377.8 4	$(27/2)^+$	>0.7 ps	

 † From least-squares fit to Ey data.

[‡] From Adopted Levels.

[#] From DSA (1986Wa25), unless otherwise stated.

^{*a*} From γ (t) with pulsed beam (1986Bi09).

[&] From RDDS (1986Wa25).

From $\gamma\gamma$ evidence, majority of unplaced γ rays must lie at the top of level scheme (1986Wa25).

E_{γ}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α &	$I_{(\gamma+ce)}$	Comments
(8.42 <i>12</i>) 29.25 5	8.4 20	2159.01 2150.62	(17/2 ⁻) (15/2 ⁻)	2150.62 2121.34	(15/2 ⁻) 13/2 ⁻	[M1] (M1(+E2))	+0.02 12	35.8 <i>14</i> 7.1 <i>17</i>	≥15 68 <i>16</i>	I _(γ+ce) : from intensity balance at 2159 level. $\alpha(K) = 6.2 \ 8; \ \alpha(L) = 0.7 \ 8; \ \alpha(M) = 0.13 \ 13$ E _{γ} : barely resolved from a 29.57 γ in ⁹⁰ Zr.
68.79 <i>3</i> 115.89 <i>7</i>	1.3 <i>3</i> 2.80 25	2995.30 3111.17	21/2 ⁺ (19/2) ⁺	2926.51 2995.30	(19/2 ⁻) 21/2 ⁺	(E1) (M1(+E2))	+0.12 15	0.338 0.14 <i>3</i>	1.8 4	A ₂ =-0.18 9, A ₄ =0. A ₂ =-0.30 8, A ₄ =0 gives δ (Q/D)=-0.03 10. A ₂ =-0.30 8, A ₄ =0.
$x_{172.02}^{*} = 4$ 177.615 20 $x_{178.0}^{@} = 5$	2.60 20 46.0 15 ≈2.0	2121.34	13/2-	1943.72	13/2+	D+Q E1(+M2)	-0.25 11 -0.06 12	0.014		$A_2 = -0.52$ 4, $A_4 = +0.04$ 6. $A_2 = +0.31$ 1, $A_4 = -0.02$ 2, POL=-0.58 7. Located somewhere above 4736 level (100 GW = 25)
206.94 8 x215.30 20	3.5 <i>4</i> 18 <i>3</i>	2150.62	(15/2 ⁻)	1943.72	13/2+	D(+Q)	-0.14 22			(1980 wa25). $A_2 = -0.41 \ 15, \ A_4 = 0.$ Placement in 2012Sa36: 6244 -> 6029 levels.
271.23 5	99 <i>3</i>	2995.30	21/2+	2724.07	17/2+	E2		0.0311		E _{γ} : barely resolved from a 271.8 γ in ⁸⁸ Zr and 269.9 γ in ⁹⁰ Zr.
333.3 6 387.08 8 458.1# 2	2.9 <i>3</i> 6.9 <i>5</i>	2454.6 3111.17	$(15/2)^{-}$ $(19/2)^{+}$ $25/2^{+}$	2121.34 2724.07	$13/2^{-}$ $17/2^{+}$ $(25/2^{+})$	M1 (M1+E2)	-0.11 6			$A_2 = +0.28 I$, $A_4 = -0.07 I$, $POL = +0.42 S$. $A_2 = -0.39 I0$, $A_4 = 0$, $POL = -0.49 I4$. $A_2 = -0.41 6$, $A_4 = +0.09 6$, $POL = -0.44 I2$.
x532.84 20	<2.0 4.6 5	4755.50	23/2	4277.5	(23/2)	(M1(+E2))	-0.12 11			A ₂ =-0.36 5, A ₄ =0, POL=-0.30 20. Placement in 2012Sa36: 6029 -> 5496 levels.
565.0 <i>5</i> 573.38 [#] 8	3.0 <i>15</i> <0.8	2724.07 2724.07	17/2 ⁺ 17/2 ⁺	2159.01 2150.62	(17/2 ⁻) (15/2 ⁻)					E_{γ} : doublet with a 562.9 γ in ⁷⁶ Ge.
580.85 20 ^x 588.01 20	41 <i>3</i> 10.9 <i>10</i>	3576.15	(23/2)+	2995.30	21/2+	M1+E2	-0.21 10			$A_2 = -0.39 \ 8, \ A_4 = 0, \ POL = -0.07 \ 5.$ POL = -0.20 20. Placement in 2012Sa36: 6833 -> 6244 levels
642.4 <i>3</i>	93	5377.8	(27/2)+	4735.36	25/2+	(M1)				E _{γ} : only partly resolved from 639 γ in ⁹⁰ Zr, 642 and 645 γ in ⁸⁸ Zr, 646.0 γ in ⁸⁸ Y and 642.3 γ in ⁹⁰ Y.
701.10 20	16.0 20	4277.3	$(25/2^+)$	3576.15	$(23/2)^+$	D(+O)	-0.14 15			$A_2 = -0.35$ 70, $A_4 = 0$, $POL = -0.01$ 26.
767.50 9 775.91 [#] 10	6.4 <i>4</i> <1.0	2926.51 2926.51	$(19/2^{-})$ $(19/2^{-})$	2159.01 2150.62	$(17/2^{-})$ $(15/2^{-})$	(M1+E2)	-0.38 6			$A_2 = -0.40 \ 20, \ A_4 = 0, \ POL = -0.10 \ 15.$
780.36 <i>5</i> 790.2 <i>3</i>	99.4 25 9 3	2724.07 3716.9	$(17/2^+)$ $(21/2^-)$	1943.72 2926.51	$(10/2^{-})$ $(13/2^{+})$ $(19/2^{-})$	E2				A ₂ =+0.30 <i>1</i> , A ₄ =-0.06 <i>1</i> , POL=+0.58 <i>6</i> . A ₂ =-0.03 <i>20</i> , A ₄ =0, POL=-0.17 <i>20</i> for composite peak.
806.55 10	4.1 8	4523.5	(23/2 ⁻)	3716.9	(21/2 ⁻)	D(+Q)	-0.23 25			E_{γ} : doublet with an unknown contaminant. A ₂ =-0.42 20, A ₄ =0, POL=+0.05 15.

2

$\frac{^{76}\text{Ge}(^{18}\text{O},5\text{n}\gamma),^{74}\text{Ge}(^{18}\text{O},3\text{n}\gamma)}{1986\text{Wa25}} \text{ (continued)}$							1986Wa25 (continued)		
γ ⁽⁸⁹ Zr) (continued)									
Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [‡]	δ^{\ddagger}	Comments	
^x 950.36 [@] 20 ^x 1291.30 20	2.30 <i>25</i> 4.0 <i>5</i>							Placement in 2012Sa36: 6029 -> 4739 levels.	
1558.5 5	5.8 4	3716.9	$(21/2^{-})$	2159.01	$(17/2^{-})$	(E2)		$A_2 = +0.30 3$, $A_4 = -0.07 3$, POL=+0.41 7.	
1740.04 20	16 3	4735.36	25/2+	2995.30	21/2+	(E2)		E_{γ} : doublet with a 1740 γ in ⁸⁷ Sr. A ₂ =+0.20 3, A ₄ =-0.06 3, POL=+0.67 18 for composite peak.	
1943.70 <i>5</i> 2121.31 <i>5</i>	154 <i>4</i> 21.6 <i>18</i>	1943.72 2121.34	13/2 ⁺ 13/2 ⁻	$\begin{array}{c} 0.0\\ 0.0\end{array}$	9/2 ⁺ 9/2 ⁺	E2 M2+E3	+1.5 4	$A_2 = +0.309 5, A_4 = -0.084 5, POL = +0.46 3.$ $A_2 = +0.69 3, A_4 = +0.18 3, POL = -0.29 6.$	

[†] From ⁷⁶Ge(¹⁸O,5nγ) (probably at E≈65 MeV).
[‡] From γ(θ) and γ(lin pol). Sign(δ) has been reversed by evaluator to conform to Krane-Steffen convention.
[#] From E(level) differences.
[@] Gamma not reported in 2012Sa36.
[&] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$ ray not placed in level scheme.

From ENSDF

 $^{89}_{40}\mathrm{Zr}_{49}$ -3

 $^{89}_{40}{
m Zr}_{49}$