${}^{89}_{38}\mathrm{Sr}_{51}$ -1

82 Se(11 B,p3n γ) 2001St14

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	NDS 114, 1 (2013)	20-Oct-2012

2001St14: E=37 MeV. Measured E γ , I γ , $\gamma\gamma$, and $\gamma\gamma(\theta)$ (DCO) using GASP array consisting of 40 escape-suppressed HPGe detectors and an inner ball containing 80 BGO elements. Comparisons with shell-model calculations involving 0f_{5/2}, 1p_{3/2}, 1p_{1/2},

 $0g_{9/2}$ protons and $1p_{1/2}$, $0g_{9/2}$, $1d_{5/2}$ neutrons.

2012Hw05: levels interpreted in terms of one- or two-phonon octupole vibrations.

⁸⁹Sr Levels

Mean lifetimes for all levels are expected as >5 ps since no Doppler shift attenuation was observed for any of the transitions from levels up to 5115 keV excitation.

E(level) [†]	$J^{\pi \ddagger}$	Comments
0.0	5/2+	
2079.43 [#] 10	$11/2^{-}$	
3388.74 [#] 14 3672.64 22	15/2 ⁻ 15/2 ⁻	
3751.14 [#] 16	$17/2^{-}$	
4209.14 [#] 16	19/2-	
5115.14 [#] 19 5725.9 4	21/2	J^{π} : positive parity proposed by 2012Hw05 based on coupling of 15/2 ⁻ to 3 ⁻ octupole state.
5979.1 4	23/2	
6649.9 [#] 4 6857.5 5 7025.7 4 7421.6 [#] 4 7984.4? 7	(25/2) (25/2) (25/2) (27/2)	

[†] From least-squares fit to $E\gamma$ data.

[‡] As proposed in 2001St14 based on DCO data, band assignment and previously known values for low-lying levels. The assignments are the same in Adopted Levels, except that parentheses have been added by the evaluator since solid arguments are still lacking.

[#] Band(A): $\nu d_{5/2} \otimes (^{88}$ Sr core). Proton excitations in ⁸⁸Sr coupled to $d_{5/2}$ neutron.

$\gamma(^{89}{\rm Sr})$

DCO values are for 35° and 90° geometry. The gating transition is stretched quadrupole 1309 γ , unless otherwise stated. Expected DCO value is 1.0 for gate on a transition of a similar and pure multipolarity; 0.54 for $\Delta J=1$, dipole when gate is on $\Delta J=2$, quadrupole; 1.0 and 1.85 for $\Delta J=0$, dipole when gated on $\Delta J=2$, quadrupole and $\Delta J=1$, dipole, respectively.

E _γ ‡	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	Comments
253.3 5	0.5 1	5979.1	23/2	5725.9			
283.9 <i>3</i>	1.6 1	3672.64	$15/2^{-}$	3388.74	$15/2^{-}$	D	DCO=0.84 15.
362.4 1	44 1	3751.14	$17/2^{-}$	3388.74	$15/2^{-}$	D	DCO=0.57 2.
395.9 <i>3</i>	1.5 2	7421.6	(27/2)	7025.7	(25/2)	(D)	DCO=0.34 10.
458.0 1	27.4 [†] 5	4209.14	$19/2^{-}$	3751.14	$17/2^{-}$		
536.5 <i>3</i>	1.4 2	4209.14	$19/2^{-}$	3672.64	$15/2^{-}$		

Continued on next page (footnotes at end of table)

82 Se(¹¹ B,p3n γ) 2001St14 (continued)							
$\gamma(^{89}\text{Sr})$ (continued)							
E _γ ‡	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	Comments
771.7 3	1.7 2	7421.6	(27/2)	6649.9	(25/2)		
820.4 1	25.8 4	4209.14	$19/2^{-}$	3388.74	$15/2^{-}$	Q	DCO=1.00 4.
864.0 <i>3</i>	5.5 5	5979.1	23/2	5115.14	21/2	Ď	DCO=0.64 10.
878.3 <i>3</i>	1.1 4	6857.5	(25/2)	5979.1	23/2	D	DCO=0.64 17.
906.0 1	33.6 9	5115.14	21/2	4209.14	$19/2^{-}$	D	DCO=0.54 2.
1309.3 <i>1</i>	100 2	3388.74	$15/2^{-}$	2079.43	$11/2^{-}$		
1334.5 5	0.7 2	7984.4?		6649.9	(25/2)		
1516.7 <i>3</i>	1.2 2	5725.9		4209.14	19/2-		
1534.7 5	13.1 [†] 6	6649.9	(25/2)	5115.14	21/2	(Q)	DCO=1.10 4, 1.36 6 for Δ J=2, E2 gated; 1.88 9, 1.57 6 for Δ J=1, M1 gated.
1593.2 <i>3</i>	1.2 <i>I</i>	3672.64	$15/2^{-}$	2079.43	$11/2^{-}$		
1910.5 <i>3</i>	1.2 <i>I</i>	7025.7	(25/2)	5115.14	21/2		
2079.4 1	123 2	2079.43	$11/2^{-1}$	0.0	$5/2^{+}$	[E3]	

[†] Contaminated transition. If DCO is given, it may not represent a correct value due to contribution from a contaminant.

 $\pm \Delta(E\gamma)=0.5$ keV for I $\gamma<1$, 0.3 keV for 1<I $\gamma<10$, and 0.1 keV for I $\gamma>10$, based on a general comment by 2001St14.

[#] 2001St04 quote E2 and M1 for $\Delta J=2$, quadrupole and $\Delta J=1$, dipole transitions, respectively. These are listed here as Q and D, respectively by the evaluator since no polarization and/or conversion data are available to determine parity. 2001St04 give multipolarities for some other transitions based on $\Delta (J^{\pi})$ and earlier studies, these are omitted here. Here mult=D implies $\Delta J=1$, dipole and mult=Q $\Delta J=2$, quadrupole transition.

 $^{89}_{38}{
m Sr}_{51}$

