Adopted Levels, Gammas

$\frac{\text { Type }}{\text { Full Evaluation }} \quad$| Author |
| :---: |
| Balraj Singh |

$\mathrm{Q}\left(\beta^{-}\right)=-12720$ SY; $\mathrm{S}(\mathrm{n})=12100 S Y ; \mathrm{S}(\mathrm{p})=398825 ; \mathrm{Q}(\alpha)=-328529 \quad$ 2021Wa16
Estimated (2021Wa16) uncertainties: 360 for $\mathrm{Q}\left(\beta^{-}\right)$, 300 for $\mathrm{S}(\mathrm{n})$.
$\mathrm{Q}(\varepsilon)=9025$ 25, $\mathrm{Q}(\varepsilon \mathrm{p})=7028$ 25, $\mathrm{S}(2 \mathrm{n})=28780400$ (syst), $\mathrm{S}(2 \mathrm{p})=606324$ (2021Wa16).
${ }^{89} \mathrm{Ru}$ identified by 1992 Ye 04 in ${ }^{58} \mathrm{Ni}\left({ }^{92} \mathrm{Mo}, \mathrm{X}\right) \mathrm{E}=70 \mathrm{MeV} /$ nucleon followed by fragment mass separation and tof ($\approx 150 \mathrm{~ns}$) techniques.
2001Ki13 (also 2002Fa13,2007WeZX): ${ }^{89} \mathrm{Ru}$ produced in fragmentation of ${ }^{112} \mathrm{Sn}$ beam in ${ }^{9} \mathrm{Be}\left({ }^{112} \mathrm{Sn}, \mathrm{X}\right)$ reaction at $\mathrm{E}=1$ $\mathrm{GeV} /$ nucleon, followed by mass separation. Measured half-life and yield. Other reports from the same group: 2000WeZZ, and E. Wefers et al., GSI annual (2000) report 2001-1, p10.
1999 Li 33 reported delayed-proton decay from ${ }^{89} \mathrm{Ru}$ formed in reaction ${ }^{58} \mathrm{Ni}\left({ }^{36} \mathrm{Ar}, 2 \mathrm{p} 3 \mathrm{n}\right)$ at 220 MeV and transported by He jet system, no mass separation was employed. The authors measured half-life of 1.2 s 2 from (proton) $\left(\gamma\right.$ in $\left.{ }^{88} \mathrm{Mo}\right)$ coin and observation of 741γ and 914γ assigned to ${ }^{88} \mathrm{Mo}$.
2004De40 also used reaction ${ }^{58} \mathrm{Ni}\left({ }^{36} \mathrm{Ar}, 2 \mathrm{p} 3 \mathrm{n}\right)$ at $\mathrm{E}=235,255 \mathrm{MeV}$ followed by mass separation. The authors did not observe any evidence for the formation of ${ }^{89} \mathrm{Ru}$ and its ε p decay or the existence of 741γ that was reported by 1999Li33. 2004De40 suggested that 741γ seen by 1999 Li 33 may be from ε decay of ${ }^{89} \mathrm{Tc}$. An upper limit of $\% \varepsilon \mathrm{p}=0.15$ was deduced by these authors.
2012Lo08: ${ }^{89} \mathrm{Ru}$ produced from fragmentation of a ${ }^{112} \mathrm{Sn}$ beam at $\mathrm{E}=120 \mathrm{MeV} /$ nucleon on a $195 \mathrm{mg} / \mathrm{cm}^{2}{ }^{9} \mathrm{Be}$ target at the National Superconducting Cyclotron Laboratory (NSCL). Fragments separated by the A1900 Fragment Separator and the Radio Frequency Fragment Separator (RFFS). Ions were implanted in the double-sided silicon strip detector (DSSD). Detection system: NSCL Beta Counting System in conjunction with the SeGA Array of 16 HPGe detectors. Measured $\mathrm{E} \gamma, \mathrm{I} \gamma, \beta$ spectra, $\mathrm{E}(\mathrm{p})$, $\mathrm{I}(\mathrm{p})$, $\beta \gamma$-coin, $\beta \mathrm{p}$-coin, $\gamma \beta \mathrm{p}$-coin, half-life, β-delayed proton emission probability. A total of $167{ }^{89} \mathrm{Ru}$ ions implanted in DSSD and six $\beta \mathrm{p}$ coin events identified.
2019Pa16: ${ }^{89} \mathrm{Ru}$ produced in ${ }^{9} \mathrm{Be}\left({ }^{124} \mathrm{Xe}, \mathrm{X}\right), \mathrm{E}=345 \mathrm{MeV} /$ nucleon followed by separation of fragments of interest using BigRIPS and ZeroDegree spectrometer, and separated ions implanted in WAS3ABi stopper and detector system at RIBF-RIKEN. The γ rays from the decay of ${ }^{89} \mathrm{Ru}$ were detected using the EURICA array of 12 cluster Ge detectors. Measured half-life of ${ }^{89} \mathrm{Ru}$ decay from (implants) β-correlated distribution and β^{+}-delayed proton emission probability.
2019Vi05: measured mass excess of g.s. of ${ }^{89} \mathrm{Ru}$ using time-of-flight ion-cyclotron resonance (TOF-ICR), and phase-imaging ion-cyclotron resonance (PI-ICR) techniques at the University of Jyvaskyla accelerator facility.
1992 MoZV and 1993 MoZR are by the same group as 1992 Ye 04 .
Theoretical calculations: consult NSR database at www.nndc.bnl.gov/nsr/ or additional document records in this dataset for five primary references for structure calculations.
Additional information 1.

${ }^{89} \mathrm{Ru}$ Levels				
Cross Reference (XREF) Flags				
				A $\quad{ }^{54} \mathrm{Fe}\left({ }^{40} \mathrm{Ca}, \alpha \mathrm{n} \gamma\right)$
E(level)	$\mathrm{J}^{\dagger \dagger}$	$\mathrm{T}_{1 / 2}$	XREF	Comments
0^{\ddagger}	(9/2 ${ }^{+}$)	1.32 s 3	A	$\% \varepsilon+\% \beta^{+}=100 ; \% \varepsilon \mathrm{p}=3.12$ (2019Pa16) $\% \varepsilon \mathrm{p}$: measured by 2019Pa16 from the number of $\beta^{+} \mathrm{p}$-coin events divided by the total number of decays as determined from the half-life analysis (2019Pa16). Others: 3.0 $+19-17$ (2012Lo08, from observation of six $\beta^{+} \mathrm{p}$-coin events, uncertainty from assuming a binomial probability distribution with a 95% confidence level); <0.15 (2004De40). $\mathrm{J}^{\pi}: 9 / 2^{+}$(1997He24) proposed from systematics, $3 / 2^{+}$(2019Mo01, theory). Possible band assignment favors $9 / 2^{+}$(2004Ma86). From analysis of delayed proton spectrum and relative branching ratio with statistical model calculations, 2005Xu04 proposed $J^{\pi}=5 / 2^{+}, 7 / 2$ for a very low deformation. But 2004De40 did not confirm observation of delayed proton activity using the same reaction as 1999Li33 or 2005Xu04, although,

Adopted Levels, Gammas (continued)

$\xrightarrow{{ }^{89} \mathrm{Ru} \text { Levels (continued) }}$
${ }^{\dagger}$ As proposed by 2004Ma86 based on systematics and $\gamma \gamma(\theta)$ data for selected transitions.
${ }^{\ddagger}$ Band(A): Yrast sequence. The band is similar to the yrast sequence in ${ }^{90} \mathrm{Ru}$. The backbends in the experimentally observed band in ${ }^{89} \mathrm{Ru}$ occur at $21 / 2-25 / 2$ and $33 / 2-37 / 2$ transitions. From calculations, the first backbend is predicted to be around $25 / 2$ due to the alignment of a pair of $\mathrm{g}_{9 / 2}$ protons, and the second backbend at $33 / 2$ may be due to the crossing of 3 qp band with a 5qp band having a pair of $\mathrm{g}_{9 / 2}$ neutrons and a pair of $\mathrm{g}_{9 / 2}$ protons aligned. See 2004Ma86 for detailed shell-model configurations.

Adopted Levels, Gammas (continued)

$$
\underline{\gamma\left({ }^{89} \mathrm{Ru}\right) \text { (continued) }}
$$

$\mathrm{E}_{i}($ level $)$	J_{i}^{π}	E_{γ}	I_{γ}	E_{f}	J_{f}^{π}	Mult.
3221.0		762.63	100	2458.4		
3302.5	$\left(25 / 2^{+}\right)$	348.62	100	2953.9	$\left(21 / 2^{+}\right)$	$(\mathrm{Q})^{\dagger}$
4219.3	(29/2+)	916.85	100	3302.5	(25/2+)	
5309.4	[33/2+ ${ }^{+}$	1090.14	100	4219.3	(29/2+)	
6239.2	$\left[37 / 2^{+}\right.$]	929.83	100	5309.4	[33/2+ ${ }^{+}$	

${ }^{\dagger} \gamma(\theta)$ and $/$ or $\gamma \gamma(\theta)$ data are consistent with $\Delta \mathrm{J}=2, \mathrm{Q}$ transition.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

Adopted Levels, Gammas

$$
{ }_{44}^{89} \mathrm{Ru}_{45}
$$

