54 Fe(40 Ca, α n γ) 2004Ma86

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Balraj Singh	ENSDF	30-Nov-2021			

2004Ma86 (also 2004Ma32): $E({}^{40}Ca)=130$ MeV. Measured $E\gamma$, $I\gamma$, $\gamma\gamma$ -coin, (particle) γ -coin, $\gamma\gamma(\theta)(DCO)$ using GASP array of

40 anti-Compton HPGe detectors and an 80 BGO detector inner ball. Charged particles were detected using ISIS silicon ball located inside the GASP array and neutrons were detected with n-ring detector system. Comparison with shell-model calculations. All data are from 2004Ma86.

levels

E(level) [‡]	Jπ†	Comments
0.0 [#]	(9/2+)	E(level): assumed as the g.s.
863.7 [#] 2	$(13/2^+)$	
1727.7 6		
1917.4 [#] 3	$(17/2^+)$	
1967.7 5 2458.4 4		
2766.9 6		
2953.9 [#] 4	$(21/2^+)$	
3028.5 5		
3221.0 3 $3202 5 \frac{4}{7} 4$	$(25/2^{+})$	
$3302.3 \ 4$	(23/2)	
$4219.5 / 5200 4 \frac{4}{9} 8$	(29/2)	
5309.4 0	[33/2]	
0239.2 9	[37/2]	

[†] As proposed by 2004Ma86 based on systematics and $\gamma\gamma(\theta)$ data for selected transitions.

^{\ddagger} From E γ data.

[#] Band(A): Yrast sequence, based on $(9/2^+)$. The band is similar to the yrast sequence in ⁹⁰Ru. The backbends in the experimentally observed band in ⁸⁹Ru occur at 21/2-25/2 and 33/2-37/2 transitions. From calculations, the first backbend is predicted to be around 25/2 due to the alignment of a pair of $g_{9/2}$ protons. The second backbend at 33/2 may be due to the crossing of 3-qp band with a 5-qp band having a pair of $g_{9/2}$ neutrons and a pair of $g_{9/2}$ protons aligned. See 2004Ma86 for detailed shell-model configurations.

$\gamma(^{89}\mathrm{Ru})$

Eγ	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	Comments
348.6 2	27 2	3302.5	$(25/2^+)$	2953.9 (21/2+)	$(Q)^{\dagger}$	DCO=0.96 21
490.7 <i>3</i>	82	2458.4		1967.7		
541.0 <i>3</i>	11 2	2458.4		1917.4 (17/2 ⁺)		
762.6 3	13 <i>3</i>	3221.0		2458.4		
849.5 5	62	2766.9		1917.4 (17/2+)		
863.7 2	100 8	863.7	$(13/2^+)$	0.0 (9/2+)	(Q) [†]	DCO=0.91 23; A ₂ =+0.67 13; A ₄ =+0.17 25
864.0 5	10 4	1727.7		863.7 (13/2 ⁺)		
916.8 5	15 <i>3</i>	4219.3	$(29/2^+)$	3302.5 (25/2+)		
929.8 <i>3</i>	72	6239.2	$[37/2^+]$	5309.4 [33/2+]		
1036.5 2	28 <i>3</i>	2953.9	$(21/2^+)$	1917.4 (17/2+)	(Q) [†]	DCO=0.92 27
1053.7 2	55 4	1917.4	$(17/2^+)$	863.7 (13/2 ⁺)	(Q) [†]	DCO=1.10 26
1090.1 4	13 <i>3</i>	5309.4	$[33/2^+]$	4219.3 (29/2+)		

Continued on next page (footnotes at end of table)

⁵⁴Fe(⁴⁰Ca, α n γ) **2004Ma86** (continued)

 $\gamma(^{89}\text{Ru})$ (continued)

Eγ	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}
1104.1 6	10 3	1967.7		863.7	$(13/2^+)$
1111.1 4	10 <i>3</i>	3028.5		1917.4	$(17/2^+)$

 † $\gamma(\theta)$ and/or $\gamma\gamma(\theta)$ data are consistent with $\Delta J{=}2{,}Q$ transition.

⁸⁹₄₄Ru₄₅

 $^{89}_{44}$ Ru $_{45}$