Adopted Levels:unobserved

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	Balraj Singh	ENSDF	30-Nov-2021		

 $S(n)=16860 SY; S(p)=-1400 SY; Q(\alpha)=-2230 SY 2021Wa16$

Estimated uncertainties (2021Wa16): 540 for S(n), 200 for S(p), 540 for Q(α).

Q(\varepsilon)=12720 360, Q(\varepsilon)=8730 360, S(2p)=2540 360 (syst, 2021Wa16). S(2n)=30740 (theory, 2019Mo01).

The ⁸⁹Rh isotope is expected to be unbound towards proton emission. Laboratory identification of ⁸⁹Rh remains uncertain, as also in the most recent study by 2016Ce02.

1995Ry03 (also 1995Le14): ⁸⁹Rh isotope reported by analyzing fragments by time-of-flight ($\approx 1.5 \ \mu$ s) method in Ni(¹¹²Sn,X) at E=58 MeV/nucleon, GANIL facility using LISE3 spectrometer. The ⁸⁹Rh fragments were observed 1.5 μ s after a time-of-flight. It was not known whether these events were from the ground state or an isomer.

2007WeZX, 2000WeZZ (also E. Wefers et al., GSI annual (2000) report 2001-1,p10): no evidence was found for the formation of ⁸⁹Rh isotope in ⁹Be(¹¹²Sn,X) at E(¹¹²Sn)=1 GeV/nucleon, FRS at GSI, with the implication that it may be unbound towards proton emission.

- 2016Ce02: ⁸⁹Rh nuclide searched at RIBF-RIKEN facility in ⁹Be(¹²⁴Xe,X) reaction at E=345 MeV/nucleon with an average beam intensity of 30 pnA. Identification of residues was made by determining atomic Z and mass-to-charge ratio A/Q, where Q=charge state of the ions. The selectivity of ions was based on magnetic rigidity, time-of-flight and energy loss using BigRIPS separator and zero degree spectrometer ZDS. The separated nuclei were implanted in a wide range silicon-strip stopper array for ion and β particle detection WAS3ABi, consisting of three highly-segmented 1 mm thick double-sided silicon detectors, a stack of ten segmented 1 mm thick single-sided silicon strip detectors. The γ rays were detected by EURICA array of 84 HPGe detectors surrounding the WAS3ABi system. In addition an array of 18 LaBr₃(Ce) detectors was used for γ detection in fast-timing measurements. An upper limit of one event was assigned by authors to the ⁸⁹Rh nuclide.
- Theoretical calculations: consult NSR database at www.nndc.bnl.gov/nsr/ or additional document records in this dataset for ten primary references, seven for structure and three for half-life and decay mode of ⁸⁹Rh.

Additional information 1.

⁸⁹Rh Levels

E(level)	T _{1/2}	Comments
0?	<120 ns	$\%$ p=?; $\%\varepsilon + \%\beta^+$ =?; $\%\varepsilon$ p=?
		E(level): the ⁸⁹ Rh fragments claimed to have been observed by 1995Ry03 may be from the g.s. or an isomer of ⁸⁹ Rh. However no events due to ⁸⁹ Rh were either observed in the GSI experiment (2007WeZX, 2000WeZZ, E. Wefers et al., 2000 GSI annual report 2001-1, p10); or in the RIBF-RIKEN study by 2016Ce02, where an upper limit of one event was assigned to ⁸⁹ Rh, thus the laboratory identification of this nuclide remains unconfirmed.

 J^{π} : 9/2⁺ proposed from systematics (2021Ko07); 3/2⁺ (2019Mo01, theoretical calculations); 7/2⁺ in 1995Ry03,

 $T_{1/2}$: from 2016Ce02, based on upper limit of one event assigned to ⁸⁹Rh, with the assumption that the ratio of number of identified events associated with nuclei of the same T_z is the same as that for the neighboring T_z nuclei. One event assigned to ⁸⁹Rh was assumed for ground-state activity, although, the authors mentioned that the proton decay could occur from either the ground state or from an isomeric activity. Other: $\approx 1.5 \ \mu s$ (1995Ry03) from time-of-flight.

 $T_{1/2}$: Theoretical proton decay $T_{1/2}=7 \ \mu s$ (2007Me28), using Q value of 708 keV; 201 ns (for l=0), 214 ns (for l=2) and 4 μs (for l=5) (2015Sh03), using Q value of 700 keV.

T_{1/2}: theoretical β decay T_{1/2}=90 ms (2019Mo01).