History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Balraj Singh	NDS 114,1 (2013)	20-Oct-2012					

 $Q(\beta^{-})=4497 6$; S(n)=7175 6; S(p)=9310 6; $Q(\alpha)=-5562 7 2012$ Wa38

Note: Current evaluation has used the following Q record 4496.5 54 7174.6 55 9310.1 61 –5561.763 2011AuZZ. S(2n)=13257.1 55, S(2p)=22398.6 63 (2011AuZZ).

Values in 2003Au03: $Q(\beta^{-})=44975$, S(n)=71755, S(p)=930914, $Q(\alpha)=-552720$, S(2n)=132575, S(2p)=2243419.

⁸⁹Rb isotope produced and identified in neutron fission of uranium by 1940Ha10 and 1940Gl05. Later studies of decay of ⁸⁹Rb isotope: 1956Ok06, 1969Ca03, 1972Eh02, 1973He01, 1997Gr09, and several others.

Mass measurements: 2002Ra23 (Penning trap), 1986Au02.

Theoretical calculations (isotope shifts, mean-square radii, etc.): 2010Ro03, 1996Ma57, 1987My01, 1984Kr06, 1980Ca23, 1979Kl03. Additional information 1.

⁸⁹Rb Levels

Cross Reference (XREF) Flags

		A 89 Kr β^{-} B 86 Kr(α ,p C 124 Sn(96	decay (3.)) Zr,Xγ), ¹⁷⁶	15 min) $E = \frac{238 U(^{48} Ca, X\gamma)}{^{238} U(^{82} Se, X\gamma), ^{192} Os(^{82} Se, X\gamma), ^{62} Yb(^{36} S, X\gamma)}$
E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
0	3/2-	15.32 min 10	ABCDE	$\frac{\%\beta^{-}=100}{\mu=+2.3836 7 (1981Th04,1989Ra17,2011StZZ)}$ Q=+0.144 26 (1981Th04,1989Ra17,2011StZZ) RMS charge radius: $()^{1/2}=4.2420$ fm 79 (2004An14 evaluation; and 2008 update available at http://cdfe.sinp.msu.ru). J ^π : spin from 1978Ek05 (hyperfine structure measurement by atomic-beam resonance method), parity from log $f^{1u}t=10.2$ to $7/2^{+}$. $\sigma(\theta)$ in (α ,p) is consistent with $3/2^{-}$. T _{1/2} : from weighted average (using normalized-residuals method) of 15.60 min 9 (1972Eh02), 15.15 min 12 (1969Ca03), 14.9 min 3 (1956Ok06) and 15.4 min 2 (1940Gl05); reduced $\chi^{2}=2.6$ with adjusted uncertainty of 0.16 min for value from 1972Eh02. Other averaging methods give: 15.39 min 13 (LWM method, $\chi^{2}=3.8$) and 15.22 min 9 (Rajeval technique, $\chi^{2}=1.2$ with adjusted uncertainty of 0.4 min for value from 1972Eh02). Other: 15.5 min (1940Ha10). μ : from hyperfine structure measurement of Rb by LASER spectroscopy (1981Th04). Others: 2.378 4 (1979Ek02), 2.377 5 (1979Kl03).
220.948 9	5/2 ⁽⁻⁾		ABCDE	XREF: B(227). J ^π : ΔJ=1, dipole γ to 3/2 ⁻ from γγ(θ) in (⁴⁸ Ca,Xγ); 1/2 not allowed by anisotropic γ distribution; $\sigma(\theta)$ distribution in (α,p). Probable shell-model configuration= $\pi(p_{+\alpha}^4, f_{-\alpha}^5) \otimes vd_{-\alpha}^2$ (1973He01)
497.400 <i>17</i>	(1/2 ⁻)		AB	XREF: B(500). J ^{π} : probable shell-model state with configuration= $\pi(p^2, p^6, p^1, p) \otimes yd^2 = (1973\text{He}01)$
577.07 5	(3/2,5/2,7/2 ⁻)		Ab	XREF: b(600). J^{π} : gammas to 3/2 ⁻ and 5/2 ⁽⁻⁾ ; γ from (5/2 ⁺ ,7/2 ⁻); log <i>ft</i> =7.6 from 3/2 ⁽⁺⁾ disfavors 7/2 ⁺ . Possible weak 79.4 γ to (1/2 ⁻) disfavors 5/2 ⁺ .7/2 ⁻ .
586.00 <i>3</i>	7/2 ⁽⁻⁾		AbCDE	XREF: $b(600)$. I^{π} : $AI=2 \propto t_0 3/2^{-1}$: log $ft=7.9$ from $3/2^{(+)}$
867.11 6	(1/2 to 7/2 ⁻)		AB	J^{π} : γ to $3/2^{-}$, $\log f(-7.5)$ from $5/2^{-7.5}$. XREF: B(856). J^{π} : γ to $3/2^{-}$.

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

⁸⁹Rb Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
931.01 5	$(5/2^+, 7/2^-)$		A CD	J^{π} : γ to $3/2^{-}$; γ from $(9/2^{+})$.
997.48 5	$(7/2^{-})$		ABCDE	XREF: B(991).
				J^{π} : γ to $3/2^{-}$. $\Delta J=(0) \gamma$ to $7/2^{(-)}$; $\sigma(\theta)$ in (α,p) suggests $7/2,9/2$.
1195.36 [‡] 5	$(9/2^+)$	8 ns 2	ABCDE	XREF: B(1186).
				J^{π} : $\Delta J=(2) \gamma$ to $(5/2^{-})$; $\Delta J=1 \gamma$ to $(7/2^{-})$; nanosecond isomer from heavy-ion
				studies. log $ft=7.9$ from $3/2^{(+)}$ would be inconsistent.
				$1_{1/2}$: from analysis of the timing parameter in delayed coincidences between γ
				Others: 15.2 ns 28 (2010ToZX) few nanosecond in 238 U 192 Os(82 Se Xy)
				(2007Bu35). Note that value in 2010ToZY is almost twice as large as from
				2009Pa20.
1324.35 4	$(3/2^{-}, 5/2^{-})$		Α	J^{π} : gammas to 3/2 ⁻ , (1/2 ⁻) and 7/2 ⁽⁻⁾ ; log <i>ft</i> =7.4 from 3/2 ⁽⁺⁾ .
1340.06 18	$(3/2^{-}, 5/2, 7/2^{-})$		AB	XREF: B(1345).
1 400 01 10				J^{π} : gammas to $3/2^{-}$ and $7/2^{(-)}$; log $ft=8.1$ from $3/2^{(+)}$.
1488.31 10	(3/2, 5/2, 7/2)		A AD	J^{*} : gammas to $3/2$ and $(7/2)$.
1550.24 /	(3/2, 3/2, 1/2)		AD	AREF. B(1313). I^{π_1} gammas to $3/2^{-}$ and $7/2^{(-)}$. log f_{t-7} 35 from $3/2^{(+)}$
1693.78.4	$(5/2^+)$		AB	XREF: B(1694).
10,01,01	(0/=)			J^{π} : gammas to $3/2^{-}$ and $(9/2^{+})$. log ft=6.69 from $3/2^{(+)}$.
1821.69 6	$(5/2^+, 7/2^-)$		AB	XREF: B(1833).
				J^{π} : gammas to $5/2^{(-)}$ and $(9/2^+)$; log <i>ft</i> =7.9 from $3/2^{(+)}$.
1864.74 8	$(5/2^+)$		Α	J^{π} : gammas to 3/2 ⁻ , (1/2 ⁻) and (9/2 ⁺); log <i>ft</i> =8.0 from 3/2 ⁽⁺⁾ .
1998.55 5	$(3/2^{-}, 5/2^{-})$		AB	XREF: B(2004).
2004 47 2	(12/2+)			J^{*} : gammas to $3/2^{-1}$, $(1/2^{-1})$ and $1/2^{-1}$; $\log ft = 1.15$ from $3/2^{-1}$.
2004.4+ 3	$(13/2^{+})$ $(2/2^{-}, 5/2, 7/2^{-})$		CDE	$J^{\pi}: \Delta J = 2 \gamma \text{ to } (9/2^{+}).$
2141.33 <i>13</i> 2159 98 <i>4</i>	(3/2, 3/2, 1/2) $(5/2^+)$		A AR	J^{-1} : gammas to $5/2^{-1}$ and $1/2^{-1}$.
2137.70 4	(3/2)		пD	I^{π} : gammas to $3/2^{-}$, $7/2^{(-)}$ and $(9/2^{+})$: log ft=6.94 from $3/2^{(+)}$.
2218.71? 15			A	(γ_{2}) , (δ_{2}) , (γ_{2}) , (δ_{2}) ,
2269.7 4			Α	J^{π} : γ to $7/2^{(-)}$ suggests $3/2^{-}$ to $11/2^{-}$.
2365.25 16			Α	J^{π} : γ to (5/2 ⁺) suggests 1/2 ⁺ to 9/2 ⁺ .
2387.98 15	$(1/2^{-} \text{ to } 7/2^{-})$		Ab	XREF: $b(2395)$.
2400.00.5	1/0 2/0 5/0(-)			$J^{\prime}: \gamma$ to $S/2^{(\prime)}; \log ft=7.8$ from $3/2^{(\prime)}.$
2400.90 3	1/2,3/2,3/2		AD	AREF: $D(2393)$.
2512			B	J : gamma to $(1/2)$, $\log f = 0.44$ from $5/2^{1/2}$.
2598.10 4	$(3/2^{-}, 5/2)$		AB	XREF: B(2614).
				J^{π} : gamma to $7/2^{(-)}$; log ft=6.03 from $3/2^{(+)}$.
2782.04 7	(3/2 ⁻ ,5/2)		Α	J^{π} : gammas to $7/2^{(-)}$ and $(5/2^+)$; log <i>ft</i> =6.83 from $3/2^{(+)}$.
2788.73 25	$(3/2^{-}, 5/2, 7/2^{-})$		Α	J^{π} : gammas to $3/2^{-}$ and $(7/2^{-})$; log $ft=7.6$ from $3/2^{(+)}$.
2840.4 [‡] 5	$(17/2^+)$		BCDE	XREF: B(2842).
201112	(2) (2- 5) (2)			J^{π} : $\Delta J=2 \gamma$ to (13/2 ⁺).
2866.13 6	$(3/2^{-}, 5/2)$		A AD	J [*] : gammas to $3/2^{-}$ and $7/2^{(-)}$; log $ft=6.32$ from $3/2^{(+)}$.
5017.55 11	1/2,3/2,3/2		AD	AREF. $B(5020)$. $I^{\pi} \cdot \log t = 7.0$ from $3/2^{(+)}$
3249.96.20			Α	J^{π} : γ to $5/2^{(-)}$ suggests $1/2^{-}$ to $9/2^{-}$.
3327.93 8	$(3/2^{-}, 5/2)$		A	J^{π} : γ to $7/2^{(-)}$: log $ft=6.24$ from $3/2^{(+)}$.
3361.40 9	(3/2 ⁻ ,5/2)		Α	J^{π} : γ to $7/2^{(-)}$; log $ft=6.31$ from $3/2^{(+)}$.
3370.81 9	1/2,3/2,5/2		Α	J^{π} : log <i>ft</i> =6.20 from $3/2^{(+)}$.
3465.07 20	(3/2 ⁻ ,5/2)		Α	J^{π} : γ to $7/2^{(-)}$; log <i>ft</i> =6.9 from $3/2^{(+)}$.
3532.88 14	(3/2 ⁻ ,5/2)		Α	J^{π} : γ to $7/2^{(-)}$; log ft=6.16 from $3/2^{(+)}$.
3717.42 13	$(5/2^+)$		Α	J^{π} : γ to (9/2 ⁺); log ft=5.71 from 3/2 ⁽⁺⁾ .

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

⁸⁹Rb Levels (continued)

E(level) [†]	J^{π}	XREF	Comments
3719.95 15	$(3/2^{-}, 5/2)$	A	J^{π} : γ to (7/2 ⁻); log ft=6.5 from 3/2 ⁽⁺⁾ .
3833.9 3	1/2,3/2,5/2	Α	J^{π} : log ft=6.5 from $3/2^{(+)}$.
3898.8 <i>3</i>	1/2,3/2,5/2	Α	J^{π} : log ft=6.6 from $3/2^{(+)}$; possible γ to $(9/2^+)$ favors $5/2^+$.
3965.54 18	$1/2^{(+)}, 3/2, 5/2$	Α	J^{π} : γ to $(5/2^+, 7/2^-)$; log $ft=6.2$ from $3/2^{(+)}$.
3977.38 21	1/2,3/2,5/2	Α	J^{π} : log ft=6.3 from 3/2 ⁽⁺⁾ .
4032.7 [‡] 6	(21/2 ⁺)	CDE	J^{π} : $\Delta J=2 \gamma$ to (17/2 ⁺). Shell-model calculations predict two states of 19/2 ⁺ and 21/2 ⁺ close in energy.
4048.63 15	$(3/2^{-}, 5/2)$	Α	J^{π} : γ to $7/2^{(-)}$; log ft=6.0 from $3/2^{(+)}$.
4058.5? <i>3</i>		Α	J^{π} : γ to $5/2^{(-)}$ suggests $1/2^{-}$ to $9/2^{-}$.
4080.90 15	$(1/2^+, 3/2^+, 5/2^+)$	Α	J^{π} : log ft=5.81 from $3/2^{(+)}$.
4143.89 17	$(1/2^+, 3/2^+, 5/2^+)$	Α	J^{π} : log ft=5.7 from $3/2^{(+)}$.
4198.6 4	1/2,3/2,5/2	Α	J^{π} : log ft=6.2 from 3/2 ⁽⁺⁾ .
4216.9 4	1/2,3/2,5/2	Α	J^{π} : log ft=6.17 from $3/2^{(+)}$.
4230.7 4	1/2 ⁽⁺⁾ ,3/2,5/2	Α	J^{π} : γ to $(5/2^+, 7/2^-)$; log $ft=6.1$ from $3/2^{(+)}$.
4307.2 4	$(3/2^{-}, 5/2)$	Α	J^{π} : γ to $7/2^{(-)}$; log $ft=6.1$ from $3/2^{(+)}$.
4338.75 21	$(3/2^{-}, 5/2)$	Α	J^{π} : γ to (7/2 ⁻); log ft=6.0 from 3/2 ⁽⁺⁾ .
4340.5 4	$(1/2^+, 3/2^+, 5/2^+)$	Α	J^{π} : log ft=5.87 from $3/2^{(+)}$.
4367.37 13	$(5/2^+)$	Α	J^{π} : gammas to $3/2^{-}$, $7/2^{(-)}$ and $(9/2^{+})$; log ft=5.38 from $3/2^{(+)}$.
4404.62 23	$(3/2^+, 5/2^+)$	Α	J^{π} : γ to $5/2^{(-)}$; log $ft=5.7$ from $3/2^{(+)}$.
4478.15 22	$(1/2^+, 3/2^+, 5/2^+)$	Α	J^{π} : log ft=5.42 from $3/2^{(+)}$.
4487.8 <i>4</i>	$(5/2^+)$	Α	J^{π} : γ to $7/2^{(-)}$; log $ft=5.1$ from $3/2^{(+)}$.
4631.25 16	$(5/2^+)$	Α	J^{π} : γ to $7/2^{(-)}$; log ft=4.7 from $3/2^{(+)}$.
4686.2? 5	$(1/2^+, 3/2^+, 5/2^+)$	Α	J^{π} : log ft=5.5 from 3/2 ⁽⁺⁾ .
5327.7 [‡] 5	$(23/2^+)$	D	J^{π} : γ to (21/2 ⁺); possible band assignment.
5605.9 [‡] 4	$(25/2^+)$	CD	J^{π} : γ to (21/2 ⁺); possible band assignment.
6699.6 6		D	
6704.8 <i>5</i>		D	
7391.3 6		D	

[†] From least-squares fit to $E\gamma$ data. [‡] Band(A): $\pi g_{9/2}$ band, $\alpha = +1/2$.

$\gamma(^{89}\text{Rb})$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.	α [@]	Comments
220.948	5/2 ⁽⁻⁾	220.948 9	100	0	3/2-	D		
497.400	$(1/2^{-})$	497.383 18	100	0	3/2-			
577.07	$(3/2, 5/2, 7/2^{-})$	79.4 <mark>b</mark> 5	0.50 7	497.400	$(1/2^{-})$			
	(-1-,-1-,-1-)	356.16.9	73 4	220.948	$5/2^{(-)}$			
		576.96 10	100 6	0	3/2-			
586.00	$7/2^{(-)}$	364.88 10	5.4 <i>4</i>	220.948	5/2(-)			
	,	586.03 4	100 5	0	3/2-	Q		
867.11	$(1/2 \text{ to } 7/2^{-})$	867.08 7	100	0	3/2-			
931.01	$(5/2^+, 7/2^-)$	345.03 10	100 7	586.00	$7/2^{(-)}$			
		354.1 ^b 4	11.4 25	577.07	$(3/2, 5/2, 7/2^{-})$			
		710.05 20	66 5	220.948	$5/2^{(-)}$			
		930.95 10	53 <i>3</i>	0	3/2-			
997.48	$(7/2^{-})$	411.42 10	100 6	586.00	$7/2^{(-)}$	D		
		776.49 20	44 7	220.948	$5/2^{(-)}$			
		997.37 10	25.8 16	0	3/2-			
1195.36	$(9/2^+)$	197.9 2	153 <i>31</i>	997.48	(7/2 ⁻)	(E1)	0.0129	$B(E1)(W.u.)=2.5\times10^{-6} 9$ Additional information 2.
		264.348 14	67 4	931.01	$(5/2^+, 7/2^-)$			
		610.2 7	1.8 10	586.00	$7/2^{(-)}$	[E1]		$B(E1)(W.u.)=1.0\times10^{-9}$ 7
		974.39 10	100 6	220.948	$5/2^{(-)}$	(M2) [#]		B(M2)(W.u.)=0.067 19
		1195.1 <i>3</i>	8.6 14	0	3/2-	[E3]		B(E3)(W.u.)=2.4 8
1324.35	$(3/2^{-}, 5/2^{-})$	738.39 7	100 5	586.00	$7/2^{(-)}$			
		747.4 <i>3</i>	2.7 6	577.07	$(3/2, 5/2, 7/2^{-})$			
		826.75 10	18.1 14	497.400	$(1/2^{-})$			
		1103.18 20	21.4 14	220.948	$5/2^{(-)}$			
		1324.28 7	73 4	0	3/2-			
1340.06	$(3/2^{-}, 5/2, 7/2^{-})$	753.5 4	23 6	586.00	$7/2^{(-)}$			
		763.3 3	100 20	577.07	(3/2, 5/2, 7/2)			
1/88 31	$(3/2^{-} 5/2 7/2^{-})$	1340.0 5	49 0	007.48	$\frac{5}{2}$			
1400.31	(3/2, 3/2, 7/2)	490.70 20 557 30 20	50 5	931.01	(7/2) $(5/2^+ 7/2^-)$			
		1267.2.6	76	220.948	(3/2, 7/2) $5/2^{(-)}$			
		1488.1 4	29.6	0	$3/2^{-}$			
1530.24	$(3/2^{-}, 5/2, 7/2^{-})$	662.9 4	2.4 5	867.11	$(1/2 \text{ to } 7/2^{-})$			
	(-1)-1)-1	944.19 15	4.9 5	586.00	7/2 ⁽⁻⁾			
		953.18 20	3.2 5	577.07	$(3/2,5/2,7/2^{-})$			
		1308.9 <i>3</i>	2.0 4	220.948	$5/2^{(-)}$			
		1530.04 15	100 6	0	3/2-			
1693.78	$(5/2^+)$	205.03 20	1.8 4	1488.31	(3/2 ⁻ ,5/2,7/2 ⁻)			

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.
1693.78	(5/2+)	369.30 10	20.1 12	1324.35	(3/2-,5/2-)	
		498.6 2	17 <i>3</i>	1195.36	$(9/2^+)$	
		696.24 10	25.9 17	997.48	$(7/2^{-})$	
		762.7 5	13.4 17	931.01	$(5/2^+, 7/2^-)$	
		1107.78 10	42 3	586.00	$7/2^{(-)}$	
		1116.61 7	24.1 15	577.07	$(3/2, 5/2, 7/2^{-})$	
		1472.76 10	100 6	220.948	$5/2^{(-)}$	
		1693.70 10	64 4	0	3/2-	
1821.69	$(5/2^+, 7/2^-)$	626.20 10	100 7	1195.36	$(9/2^+)$	
		891.0 <mark>0</mark> 10	83 <i>23</i>	931.01	$(5/2^+, 7/2^-)$	
		1235.62 10	99 8	586.00	$7/2^{(-)}$	
		1600.7 <i>3</i>	12.0 23	220.948	$5/2^{(-)}$	
1864.74	$(5/2^+)$	668.6 <i>6</i>	12 4	1195.36	$(9/2^+)$	
		934.6 5	11 4	931.01	$(5/2^+, 7/2^-)$	
		1278.5 8	95	586.00	$7/2^{(-)}$	
		1367.48 20	44 5	497.400	$(1/2^{-})$	[M2]
		1643.82 10	100 8	220.948	$5/2^{(-)}$	
		1865.2 5	24 4	0	3/2-	
1998.55	$(3/2^{-}, 5/2^{-})$	304.7 7	1.7 9	1693.78	$(5/2^+)$	
		468.4 <mark>6</mark> 6	7.3 18	1530.24	$(3/2^{-}, 5/2, 7/2^{-})$	
		674.11 20	17.6 17	1324.35	$(3/2^{-}, 5/2^{-})$	
		1067.7 4	5.2 12	931.01	$(5/2^+, 7/2^-)$	
		1131.51 20	12.1 17	867.11	$(1/2 \text{ to } 7/2^{-})$	
		1412.59 15	20.0 17	586.00	$7/2^{(-)}$	
		1421.64 20	17.0 15	577.07	$(3/2, 5/2, 7/2^{-})$	
		1500.96 10	100 8	497.400	$(1/2^{-})$	
		1777.60 10	58 <i>5</i>	220.948	$5/2^{(-)}$	
		1998.6 5	8.9 17	0	3/2-	
2004.4	$(13/2^+)$	809.1 2	100	1195.36	$(9/2^+)$	Q
2141.35	$(3/2^{-}, 5/2, 7/2^{-})$	1555.28 20	100 12	586.00	$7/2^{(-)}$	
	(7 (8)	2140.5 6	41.8	0	3/2-	
2159.98	$(5/2^{+})$	295.5 7	1.5 11	1864.74	$(5/2^+)$	
		338.20 10	31.1.25	1821.69	$(5/2^+, 7/2^-)$	
		400.13 10	/30	1693.78	(5/2') $(2/2^{-}, 5/2, 7/2^{-})$	
		029.15 20	31.1 24 100 7	1330.24	(3/2, 3/2, 1/2)	
		055.55 IU 064 2 4	5312	1324.33	(3/2, 3/2)	
		1162 50 10	19 5 18	007 / 2	(9/2) $(7/2^{-})$	
		1228.8.3	13.1.16	931.01	$(7/2^{+})$ $(5/2^{+})$	
		1573 78 20	17 3 16	586.00	(3/2, 7/2)	
		1373.10 20	17.5 10	500.00	112	

S

E_i (level)	\mathbf{J}_i^π	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}
2159.98	(5/2+)	1582.9 3	8.2 13	577.07	(3/2,5/2,7/2 ⁻)
		1939.11 <i>15</i>	58 4	220.948	$5/2^{(-)}$
		2160.02 9	48 <i>3</i>	0	3/2-
2218.71?		1721.29 ^{&b} 15	100 <mark>&</mark>	497.400	$(1/2^{-})$
2269.7		1683.8 4	100	586.00	$7/2^{(-)}$
2365.25		671.40 20	100 19	1693.78	$(5/2^+)$
		1788.2 <i>3</i>	100 15	577.07	$(3/2, 5/2, 7/2^{-})$
2387.98	$(1/2^{-} \text{ to } 7/2^{-})$	523.5 4	24 9	1864.74	$(5/2^+)$
		1048.2 3	44 9	1340.06	$(3/2^-, 5/2, 7/2^-)$
		1063.1 4	50 11	1324.35	$(3/2^{-}, 5/2^{-})$
		1810.73 20	100 11	577.07	$(3/2, 5/2, 7/2^{-})$
	<i>(</i>)	2167.9 ⁰ 6	30 10	220.948	$5/2^{(-)}$
2400.90	$1/2, 3/2, 5/2^{(-)}$	242.2 11	0.23 16	2159.98	$(5/2^+)$
		402.25 20	6.2 7	1998.55	$(3/2^-, 5/2^-)$
		707.01 20	9.77	1693.78	$(5/2^{+})$
		870.42 20	3.1 4	1530.24	(3/2, 5/2, 1/2)
		10/0.48 20	4.6.5	1324.35	(3/2, 5/2) $(1/2 to 7/2^{-})$
		1933.00 13	133	577.07	$(1/2 \ 10 \ 1/2 \)$ $(3/2 \ 5/2 \ 7/2^{-})$
		1903 40 10	20.3.20	497 400	(3/2, 3/2, 7/2) $(1/2^{-})$
		2400.99 9	14.1 12	0	$3/2^{-}$
2598.10	$(3/2^{-}, 5/2)$	197.1 3	7.0 14	2400.90	$1/2.3/2.5/2^{(-)}$
		438.08 10	13.4 8	2159.98	$(5/2^+)$
		599.52 20	1.23 17	1998.55	$(3/2^{-}, 5/2^{-})$
		904.27 7	100 6	1693.78	$(5/2^+)$
		1273.73 10	18.9 <i>11</i>	1324.35	$(3/2^{-}, 5/2^{-})$
		1729.9 <mark>6</mark> 6	0.42 17	867.11	$(1/2 \text{ to } 7/2^{-})$
		2012.23 10	21.7 14	586.00	$7/2^{(-)}$
		2021.04 15	3.4 <i>3</i>	577.07	$(3/2, 5/2, 7/2^{-})$
		2100.63 8	13.1 8	497.400	$(1/2^{-})$
		2377.4 9	11.1 8	220.948	$5/2^{(-)}$
		2597.92 20	1.50 22	0	3/2-
2782.04	$(3/2^{-}, 5/2)$	380.7 3	6.1 16	2400.90	$1/2, 3/2, 5/2^{(-)}$
		783.5 9	2.9 18	1998.55	$(3/2^-, 5/2^-)$
		917.78 20	9.7 10	1864.74	$(5/2^+)$
		1088.07 10	4/4	1093.78	$(3/2^{+})$
		1251.0 7	5.0 21	1530.24	$(3/2^{-}, 5/2, 7/2^{-})$
		1438.3 /	10.5	1324.33	(3/2, 3/2) (5/2+7/2-)
		1030.04	0.0 10	931.01 586.00	$(3/2^{+}, 1/2^{-})$
		2193.8 4	10 0	380.00	1/25

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.
2782.04	$(3/2^{-}, 5/2)$	2782.11 10	100 8	0	3/2-	
2788.73	$(3/2^{-}, 5/2, 7/2^{-})$	1464.2 3	100 14	1324.35	$(3/2^{-}, 5/2^{-})$	
		1791.4 6	26 8	997.48	$(7/2^{-})$	
		2789.2 6	29 10	0	3/2-	
2840.4	$(17/2^+)$	836.0 2	100	2004.4	$(13/2^+)$	Q
2866.13	$(3/2^{-}, 5/2)$	83.4 ⁰ 6	0.69 23	2782.04	$(3/2^{-}, 5/2)$	
		267.7 3	4.8 10	2598.10	$(3/2^{-}, 5/2)$	
		465.4 ^b 5	13.8 23	2400.90	$1/2, 3/2, 5/2^{(-)}$	
		1044.40 10	23.5 16	1821.69	$(5/2^+, 7/2^-)$	
		1172.33 20	56 5	1693.78	$(5/2^+)$	
		1335.4 <i>3</i>	7.6 15	1530.24	$(3/2^{-}, 5/2, 7/2^{-})$	
		1868.47 25	11.3 10	997.48	$(7/2^{-})$	
		1935.1 6	2.0 7	931.01	$(5/2^+, 7/2^-)$	
		2280.2 <i>3</i>	11.7 23	586.00	$7/2^{(-)}$	
		2645.26 15	24.1 17	220.948	$5/2^{(-)}$	
		2866.23 10	100 6	0	3/2-	
3017.53	1/2,3/2,5/2	419.2 3	13 4	2598.10	$(3/2^{-}, 5/2)$	
		857.37 15	100 8	2159.98	$(5/2^+)$	
		1152.2 4	22 6	1864.74	$(5/2^+)$	
		1692.0 <i>12</i>	91 <i>35</i>	1324.35	$(3/2^{-}, 5/2^{-})$	
		2150.1 8	74	867.11	$(1/2 \text{ to } 7/2^{-})$	
		2440.9 <i>4</i>	16 <i>6</i>	577.07	$(3/2, 5/2, 7/2^{-})$	
		3017.9 3	89 10	0	3/2-	
3249.96		652.6 5	14 5	2598.10	$(3/2^{-}, 5/2)$	
		1251.0 ^{&b} 7	14 ^{&} 6	1998.55	$(3/2^{-}, 5/2^{-})$	
		1925.3 9	64	1324.35	$(3/2^{-}, 5/2^{-})$	
		3029.16 25	100 9	220.948	$5/2^{(-)}$	
3327.93	$(3/2^{-}, 5/2)$	729.63 20	36 4	2598.10	$(3/2^{-}, 5/2)$	
		1058.6 8	3.7 20	2269.7		
		1167.4 6	4.2 17	2159.98	$(5/2^+)$	
		1186.54 20	22.4 22	2141.35	$(3/2^{-}, 5/2, 7/2^{-})$	
		1506.2 3	13.7 24	1821.69	$(5/2^+, 7/2^-)$	
		1634.06 10	100 7	1693.78	(5/2 ⁺)	
		1839.72.25	43 4	1488.31	(3/2, 5/2, 7/2)	
		2330.0 8	4.4 1/	997.48	(1/2)	
		2/42.3 8	3.4 15	586.00	$1/2^{(-)}$	
		2/50.9 3	15.1 17	5//.0/	(3/2, 5/2, 7/2)	
	(2) (2 - 5) (2)	3107.26.25	23.7 22	220.948	$5/2^{(-)}$	
3361.40	$(3/2^{-}, 5/2)$	960.42 10	31.0 25	2400.90	$1/2, 3/2, 5/2^{(-)}$	
		1200.6 11	1.7 12	2159.98	$(5/2^+)$	

E_i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}
3361.40	(3/2 ⁻ ,5/2)	1667.51 <i>20</i> 1831.3 <i>3</i>	12.3 <i>14</i> 8.3 <i>12</i>	1693.78 1530.24	$(5/2^+)$ $(3/2^-, 5/2, 7/2^-)$
		2775.7 11	2.9 19	586.00	$7/2^{(-)}$
		3361.70 20	100 8	0	3/2-
3370.81	1/2,3/2,5/2	969.7 <i>3</i>	13.8 21	2400.90	$1/2, 3/2, 5/2^{(-)}$
		1210.2 9	3.2 21	2159.98	$(5/2^+)$
		1372.16 20	18.5 24	1998.55	$(3/2^{-}, 5/2^{-})$
		1676.9 <i>3</i>	21 3	1693.78	$(5/2^+)$
		2046.47 15	39 3	1324.35	$(3/2^{-}, 5/2^{-})$
		2503.0 5	7.4 18	867.11	$(1/2 \text{ to } 7/2^{-})$
		2193.15 20	100 6	577.07	(3/2,5/2,7/2)
		2873.8 [°] 4	14 ^{x} 3	497.400	$(1/2^{-})$
0465.05	(2)2- 5/2	3371.1 4	91 9	0	3/2-
3465.07	(3/2 ,5/2)	1977.7 5	12.4	1488.31	(3/2, 5/2, 7/2)
		2467.3 11	5 3	997.48	(1/2)
2522.00	(2/2 - 5/2)	28/8.69 25	100 9	586.00	$1/2^{(-)}$
3332.88	(3/2, 3/2)	1/10./ 0	2.59	1821.09	$(3/2^{-}, 1/2^{-})$
		2001.0 9	2.712 7010	007.48	(3/2, 3/2, 7/2)
		2016.0 1	5.8.10	586.00	(1/2) 7/2(-)
		3532.88.20	100.6	0	3/2-
3717 42	$(5/2^+)$	1110.6^{b} 7	37.10	2508 10	$(3/2^{-} 5/2)$
5717.42	(3/2)	2522.0.5	4812	1195 36	$(9/2^+)$
		3140.26 20	100.8	577.07	$(3/2.5/2.7/2^{-})$
		3219.84 20	41 3	497.400	$(1/2^{-})$
		3717.8 4	81 6	0	3/2-
3719.95	$(3/2^{-}, 5/2)$	1721.29 ^{&b} 15	93 <mark>&</mark> 8	1998.55	$(3/2^{-}, 5/2^{-})$
		1897.8 7	13 5	1821.69	$(5/2^+, 7/2^-)$
		2190.0 9	11 6	1530.24	$(3/2^{-}, 5/2, 7/2^{-})$
		2721.9 7	15 6	997.48	$(7/2^{-})$
		2853.3 <i>3</i>	100 14	867.11	$(1/2 \text{ to } 7/2^{-})$
3833.9	1/2,3/2,5/2	1468.5 ^{&b} 3	360 ^{&} 50	2365.25	
		2510.8 ^b 20	4.6×10 ² 19	1324.35	$(3/2^{-}, 5/2^{-})$
		3257.0 5	100 23	577.07	$(3/2, 5/2, 7/2^{-})$
3898.8	1/2,3/2,5/2	2703.2 ^b 9	49 20	1195.36	$(9/2^+)$
		3321.9 5	100 23	577.07	$(3/2, 5/2, 7/2^{-})$
		3677.7 4	94 17	220.948	$5/2^{(-)}$
		3898.4 10	49 26	0	3/2-
3965.54	1/2 ⁽⁺⁾ ,3/2,5/2	716.2 ^b 5	125 29	3249.96	

 ∞

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.
3965.54	1/2 ⁽⁺⁾ ,3/2,5/2	1804.4 ^b 6	14 6	2159.98	(5/2+)	
		2143.8 4	31 6	1821.69	$(5/2^+, 7/2^-)$	
		3098.8 7	18 6	867.11	$(1/2 \text{ to } 7/2^{-})$	
		3965.5 4	100 8	0	3/2-	
3977.38	1/2,3/2,5/2	1707.9 8	94	2269.7		
		3399.9 <i>3</i>	50 <i>5</i>	577.07	$(3/2, 5/2, 7/2^{-})$	
		3756.5 13	64	220.948	$5/2^{(-)}$	
		3977.5 ^a 4	100 ^{<i>a</i>} 19	0	3/2-	
4032.7	$(21/2^+)$	1192.9 <i>3</i>	100	2840.4	$(17/2^+)$	Q
4048.63	$(3/2^{-}, 5/2)$	687.3 4	42 11	3361.40	$(3/2^{-}, 5/2)$	
		1182.38 20	100 13	2866.13	$(3/2^{-}, 5/2)$	
		3463.3 12	25 15	586.00	$7/2^{(-)}$	
		3827.4 4	83 10	220.948	$5/2^{(-)}$	
		4048.0 5	70 7	0	3/2-	
4058.5?		1657.6 ^b 5	49 15	2400.90	1/2,3/2,5/2 ⁽⁻⁾	
		3837.6 5	100 12	220.948	$5/2^{(-)}$	
4080.90	$(1/2^+, 3/2^+, 5/2^+)$	546.9 <i>5</i>	12 5	3532.88	$(3/2^{-}, 5/2)$	
		1298.0 5	17 5	2782.04	$(3/2^{-}, 5/2)$	
		1481.96	178	2598.10	$(3/2^{-}, 5/2)$	
		1680.3 5	32 8	2400.90	$1/2, 3/2, 5/2^{(-)}$	
		2082.5 5	22 5	1998.55	$(3/2^{-}, 5/2^{-})$	
		2549.9 9	12 5	1530.24	$(3/2^{-}, 5/2, 7/2^{-})$	
		2756.6 5	26 5	1324.35	$(3/2^{-}, 5/2^{-})$	
		3503.6 14	85	577.07	$(3/2, 5/2, 7/2^{-})$	
		3583.9 <i>3</i>	100 8	497.400	$(1/2^{-})$	
		4081.4 5	29 4	0	3/2-	
4143.89	$(1/2^+, 3/2^+, 5/2^+)$	1545.2 ^b 15	24 15	2598.10	$(3/2^{-}, 5/2)$	
		2321.7 5	13 <i>3</i>	1821.69	$(5/2^+, 7/2^-)$	
		2804.1 ^b 8	10 4	1340.06	$(3/2^{-}, 5/2, 7/2^{-})$	
		2819.58 25	32 4	1324.35	$(3/2^{-}, 5/2^{-})$	
		3213.2 9	8 <i>3</i>	931.01	$(5/2^+, 7/2^-)$	
		3567.97	14 4	577.07	$(3/2, 5/2, 7/2^{-})$	
		3923.0 4	100 7	220.948	$5/2^{(-)}$	
		4143.0 12	6.3 19	0	3/2-	
4198.6	1/2,3/2,5/2	2335.2 ^b 20	143 86	1864.74	$(5/2^+)$	
		2858.9 ^b 15	77 11	1340.06	(3/2 ⁻ ,5/2,7/2 ⁻)	
		3977.5 ^a 4	100 ^a 17	220.948	$5/2^{(-)}$	
4216.9	1/2,3/2,5/2	3639.1 8	27 9	577.07	$(3/2, 5/2, 7/2^{-})$	
		3996.0 4	100 9	220.948	$5/2^{(-)}$	

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$
4230.7	1/2 ⁽⁺⁾ ,3/2,5/2	2232.6 8 3300.0 6	17 7 28 9	1998.55 931.01	$(3/2^{-}, 5/2^{-})$ $(5/2^{+}, 7/2^{-})$
4307.2	(3/2 ⁻ ,5/2)	3732.5 6 1441.3 8 3439.6 6	100 36 42 21 92 25	497.400 2866.13 867.11	$(1/2^{-})$ $(3/2^{-},5/2)$ $(1/2 \text{ to } 7/2^{-})$
		3721.5 9 3809.5 8 4307 4 11	100 42 42 17 21 13	586.00 497.400	$7/2^{(-)}$ (1/2 ⁻) $3/2^{-}$
4338.75	(3/2 ⁻ ,5/2)	1010.84 <i>20</i> 3340.8 <i>9</i>	100 <i>13</i> 33 <i>13</i>	3327.93 997.48	$(3/2^{-}, 5/2)$ $(7/2^{-})$
4340.5	(1/2+,3/2+,5/2+)	4117.7 <i>11</i> 3842.7 <i>4</i> 4341 1 6	13 6 100 11 95 9	220.948 497.400	$5/2^{(-)}$ (1/2 ⁻) $3/2^{-}$
4367.37	(5/2+)	286.3 <i>4</i> 318.3 <i>3</i>	20 6 33 11	4080.90 4048.63	$(1/2^+, 3/2^+, 5/2^+)$ $(3/2^-, 5/2)$
		1966.55 20 2207.2 5 2545.4 6 3172 1 3	100 <i>11</i> 35 <i>11</i> 38 <i>11</i> 76 <i>11</i>	2400.90 2159.98 1821.69	$\frac{1/2,3/2,5/2^{(-)}}{(5/2^+)}$ $\frac{(5/2^+,7/2^-)}{(9/2^+)}$
		3781.4 <i>4</i> 4146.9 <i>13</i>	100 9 12 6	586.00 220.948	$7/2^{(-)}$ $5/2^{(-)}$
4404.62	(3/2+,5/2+)	4368.4 8 939.4 3 2039.5 10	32 5 100 21 27 15	0 3465.07 2365.25	$(3/2^{-}, 5/2)$
		2873.8 ^{&} 4 2917.4 7 4184.3 6 4405 1 12	145 ^{&} 27 45 15 76 12 12 6	1530.24 1488.31 220.948	$(3/2^{-},5/2,7/2^{-})$ $(3/2^{-},5/2,7/2^{-})$ $5/2^{(-)}$ $3/2^{-}$
4478.15	(1/2+,3/2+,5/2+)	1461.3 5 1879.80 25 3154.4 10 4478 3 9	77 <i>15</i> 100 <i>10</i> 17 <i>9</i> 8 9 <i>2</i> 5	3017.53 2598.10 1324.35	$\frac{3}{2}$ $\frac{1}{2},\frac{3}{2},\frac{5}{2}$ $(\frac{3}{2},\frac{5}{2})$ $(\frac{3}{2},\frac{5}{2})$ $\frac{3}{2}$
4487.8	(5/2+)	$\begin{array}{c} 428.5^{b} \ 4\\ 509.1^{b} \ 5\\ 1115.0^{b} \ 8\\ 1468.5^{\&\ddagger} \ 3\\ 2622.8 \ 10\\ 2998.4 \ 6\\ \end{array}$	81 <i>19</i> 113 <i>30</i> 120 <i>45</i> 140 ^{&} <i>19</i> 16 <i>9</i> 33 <i>9</i>	4058.5? 3977.38 3370.81 3017.53 1864.74 1488.31	$\frac{1/2, 3/2, 5/2}{1/2, 3/2, 5/2}$ $\frac{1/2, 3/2, 5/2}{(5/2^+)}$ $\frac{(3/2^-, 5/2, 7/2^-)}{(3/2^-, 5/2, 7/2^-)}$
		3901.74	100 15	586.00	1/25

10

L

E_i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π
4487.8	$(5/2^+)$	4267.7 6	21 5	220.948	$5/2^{(-)}$
		4489.2 8	100 9	0	3/2-
4631.25	$(5/2^+)$	488.5 6	68 <i>30</i>	4143.89	$(1/2^+, 3/2^+, 5/2^+)$
		665.72 20	100 14	3965.54	1/2 ⁽⁺⁾ ,3/2,5/2
		1098.1 5	56 21	3532.88	$(3/2^{-}, 5/2)$
		1302.7 <i>3</i>	88 12	3327.93	(3/2-,5/2)
		1381.9 5	51 14	3249.96	
		1766.1 4	42 11	2866.13	$(3/2^{-}, 5/2)$
		2487.8 8	21 9	2141.35	$(3/2^{-}, 5/2, 7/2^{-})$
		2630.1 ^b 15	121 40	1998.55	$(3/2^{-}, 5/2^{-})$
		3634.4 9	33 10	997.48	$(7/2^{-})$
		4043.8 10	18 7	586.00	$7/2^{(-)}$
		4631.5 8	25 5	0	3/2-
4686.2?	$(1/2^+, 3/2^+, 5/2^+)$	542.2 5	65 26	4143.89	$(1/2^+, 3/2^+, 5/2^+)$
		2285.6 8	100 44	2400.90	$1/2, 3/2, 5/2^{(-)}$
		4685.6 12	179	0	3/2-
5327.7	$(23/2^+)$	1294.1 <i>3</i>	100	4032.7	$(21/2^+)$
5605.9	$(25/2^+)$	1572.3 2	100	4032.7	$(21/2^+)$
6699.6		1371.9 <i>3</i>	100	5327.7	$(23/2^+)$
6704.8		1098.9 <i>3</i>	100	5605.9	$(25/2^+)$
7391.3		686.5 <i>3</i>	100	6704.8	

[†] Primarily from ⁸⁹Kr β^- decay. Weighted averages taken when data from in-beam γ -ray studies are available.

11

[‡] Poor fit. Level energy difference=1470.3 *4*. [#] Δ J=2, Q from $\gamma\gamma(\theta)$ in (⁴⁸Ca,X γ), ΔJ^{π} requires M2.

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[&] Multiply placed with undivided intensity.

^{*a*} Multiply placed with intensity suitably divided.

^b Placement of transition in the level scheme is uncertain.

 $^{89}_{37}\text{Rb}_{52}$

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

 $^{89}_{37}\text{Rb}_{52}$

 $^{89}_{37} Rb_{52}$

⁸⁹₃₇Rb₅₂

 $^{89}_{37}\text{Rb}_{52}$

⁸⁹₃₇Rb₅₂

