238 U(48 Ca,X γ) 2009Pa20

		History		
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Balraj Singh	NDS 114, 1 (2013)	20-Oct-2012	

Includes ${}^{238}U({}^{64}Ni,X\gamma)$ and ${}^{208}Pb({}^{48}Ca,X\gamma)$ reactions.

Deep inelastic reactions.

2009Pa20: ²⁰⁸Pb(⁴⁸Ca,X γ) E=305 MeV, ²³⁸U(⁴⁸Ca,X γ) E=330 MeV and ²³⁸U(⁶⁴Ni,X γ) E=430 MeV, in all experiments used 50 mg/cm² targets. Beams from the ATLAS accelerator at Argonne. Measured E γ , I γ , $\gamma\gamma$, $\gamma\gamma(\theta)$ with Gammasphere array consisting of 100 Compton-suppressed HPGe detectors.

Level scheme is based on $\gamma\gamma$ coincidence data.

89 Rb Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	3/2-		
221.0 2	5/2 ^{-#}		
586.0 2	(7/2)		
931.0 2			
997.5 2	(7/2)		
1195.4 [@] 2	9/2 ^{+#}	8 ns 2	$T_{1/2}$: from analysis of the timing parameter in delayed coincidences between γ rays above and below the 1195.4, $9/2^+$ state.
2004.5 [@] 3	13/2 ^{+#}		
2840.5 [@] 3	17/2+#		
4033.5 [@] 4	$(21/2^+)^{\#}$		
5327.7 [@] 5	$(23/2^+)$		
5605.9 [@] 4	$(25/2^+)$		
6699.6 6			
6704.8 <i>5</i>			
7391.3 6			

 † From least-square fit to $E\gamma$ data.

[±] As proposed in 2009Pa20 based on $\gamma\gamma(\theta)$ data for selected cascades and $g_{9/2}$ band assignment.

[#] From $\gamma\gamma(\theta)$.

[@] Band(A): $\pi g_{9/2}, \alpha = +1/2$.

$\gamma(^{89}\text{Rb})$

The assignment of γ rays to ⁸⁹Rb is based on coincidence spectra obtained with double gates set on transitions below the 9/2⁺ isomer at 1195.5 keV and confirmed by observation of delayed coincidences across the isomer.

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	Comments
198.0 2		1195.4	9/2+	997.5	(7/2)		
221.0 2		221.0	$5/2^{-}$	0.0	$3/2^{-}$	D	
264.4 3		1195.4	$9/2^{+}$	931.0			
345.0 4		931.0		586.0	(7/2)		
411.5 2		997.5	(7/2)	586.0	(7/2)		
586.0 2		586.0	(7/2)	0.0	$3/2^{-}$		
686.5 <i>3</i>	<8	7391.3		6704.8			$I_{\gamma}: <5 3.$
710.0 3		931.0		221.0	$5/2^{-}$,
776.5 3		997.5	(7/2)	221.0	$5/2^{-}$		
809.1 2	100 5	2004.5	$13/2^{+}$	1195.4	9/2+	Q	

Continued on next page (footnotes at end of table)

				238	U(⁴⁸ Ca,X	<i>X</i> γ) 20	09Pa20 (continued)	
γ ⁽⁸⁹ Rb) (continued)								
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult.	Comments	
836.0 2	62.2 4	2840.5	17/2+	2004.5	13/2+	Q	Mult.: $(836.0\gamma)(809.1\gamma)(\theta)$: A ₂ =+0.15 8, consistent with ΔJ =2,quadrupole -> ΔJ =2,quadrupole cascade.	
931.0 4		931.0		0.0	$3/2^{-}$			
974.4 2		1195.4	9/2+	221.0	5/2-	(M2)	Mult.: $(974.4\gamma)(221.0\gamma)(\theta)$: A ₂ =-0.16 4 consistent with ΔJ =2,quadrupole -> ΔJ =1,dipole cascade.	
997.4 <i>4</i>		997.5	(7/2)	0.0	$3/2^{-}$			
1098.9 <i>3</i>	13.3 <i>3</i>	6704.8		5605.9	$(25/2^+)$			
1193.0 2	29.9 4	4033.5	$(21/2^+)$	2840.5	17/2+	Q	Mult.: $(1193.0\gamma)(836.0\gamma)(\theta)$: A ₂ =+0.17 5, consistent with ΔJ =2,quadrupole -> ΔJ =2,quadrupole cascade.	
1294.1 <i>3</i>	12.4 3	5327.7	$(23/2^+)$	4033.5	$(21/2^+)$			
1371.9 <i>3</i>	<11	6699.6	/	5327.7	$(23/2^+)$		I_{γ} : <8 3.	
1572.3 2	16.4 <i>3</i>	5605.9	$(25/2^+)$	4033.5	$(21/2^+)$,	

[†] Energy uncertainty and intensities received in e-mail reply from T. Pawlat. Intensity above the isomer, normalized to $I\gamma(809.1\gamma)=100$.

2

 $^{89}_{37}{
m Rb}_{52}$

²³⁸U(⁴⁸Ca,Xγ) 2009Pa20

