Adopted Levels, Gammas

	Hi		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	ENSDF	30-Nov-2021

 $Q(\beta^{-})=-7620\ 5;\ S(n)=10400\ 5;\ S(p)=6130\ 60;\ Q(\alpha)=-4265\ 8$ 2021Wa16

Q(\varepsilon)=5611 24, Q(\varepsilon p)=1325 7, S(2n)=24273 5, S(2p)=10246 6 (2021Wa16).

⁸⁹Mo identified by 1980Pa02 in ⁹²Mo(³He,⁶He) reaction experiment together with several excited states, but isotope half-life was not measured. 1975Ha11, while disproving assignment of a 7.1-min half-life to ⁸⁹Mo by 1964Bu12, suggested upper limits of 2 min and 1 min for the two activities. 1981Ga05 and 1980Ga16 reported half-life measurements for the two activities, later confirmed by 1983OxZZ and 1985Be12.

The following levels (gammas) from (³He,4nγ) (1979DeYZ,1979DeZV) only and not reported in any of the later (HI,xnγ) studies (1993We04,1993Ga19,1992WeZS) have been omitted: 496.9 (496.8); 626.4 (129.2,627.0); 1156.0 (659.5,1155.5); 1253.1 (627.0,755.8); 1440.1 (813.7). Also the following levels and gammas reported by 1992WeZS only in (HI,xnγ) are omitted due to lack of confirmation by 1993We04 and 1993Ga19: 2548 (277γ); 2911 (327γ); 3502 (352γ); 4365 (297γ); 806γ (from 5170); 975γ (from 3559); 1090γ (from 4650); 1126γ (from 4262).

Multi-particle shell model configurations of seniority=3,5,7 are given in detail by 1993We04 and 1993Ga19. Comparisons of experimental γ branching ratios with those calculated for these configurations are given by 1995Za11.

Measured mass excess of ⁸⁹Mo: 2008We10, JYFLTRAP. Additional information 1.

⁸⁹Mo Levels

Cross Reference (XREF) Flags

		A B C	⁸⁹ Mo IT ⁸⁹ Tc ε de ⁸⁹ Tc ε de	decay (190 ms) D 58 Ni(36 Ar,4pn γ), 60 Ni(32 S,2pn γ) ecay (12.8 s) E 90 Zr(3 He,4n γ) ecay (12.9 s) E 92 Mo(3 He, 6 He)
E(level) [†]	Jπ‡	T _{1/2} #	XREF	Comments
0.0	(9/2+)	2.11 min <i>10</i>	ABCDEF	$%ε+%β^+=100$ $T_{1/2}$: weighted average of 1.98 min 14 (1985Be12: $γ^{\pm}$ timing in coin with ⁸⁹ Nb γ transitions), 2.15 min 20 (1981Ga05: beam chopper system) and 2.2 min 1 (1983OxZZ: γ timing). Other: a 7.1-min activity assigned to ⁸⁹ Mo by 1964Bu12 was not confirmed by 1975Ha11 and gave upper limits of <2 min for decay of 9/2 ⁺ isomer and <1 m for decay of 1/2 ⁻ isomer. Configuration= $vg_{9/2}^{-1}$ + seniority=3 states (1993We04). Additional information 2.
118.8 <i>I</i> 387.5 2	(7/2 ⁺) (1/2 ⁻)	190 ms <i>15</i>	ABCDEF A CDEF	%IT=100 Configuration= $\nu p_{1/2}^{-1}$ + seniority=3 states (1993We04). T _{1/2} : from 1980Ga16. %IT: from log <i>ft</i> >3.6 for the transition to the J^{π} =(1/2) ⁻ state in ⁸⁹ Nb % ε +% β ⁺ is estimated to be <10. From log <i>ft</i> >5, based on systematics of values for similar transitions in this mass region % ε +% β ⁺ <0.4
1000.7 <i>1</i> 1016.4 <i>1</i> 1253 <i>15</i> 1645.8 <i>1</i> 1740 <i>15</i> 2008.4 <i>1</i> 2096.4 <i>1</i> 2110 <i>15</i>	$(11/2^+) (13/2^+) (11/2^+) (13/2^-) (17/2^+)$		D D F D D D F	
2271.2 <i>1</i>	(17/2 ⁻)	1.14 ns 8	D	$T_{1/2}$: from RDDS for 175 γ (1995Za11). Other: 1.11 ns 28 from γ (t) of 175 γ and 263 γ (1995Ka06).

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

⁸⁹Mo Levels (continued)

E(level) [†]	J ^{π‡}	$T_{1/2}^{\#}$	XREF	Comments
2415.8 <i>I</i> 2454.5 2 2583.7 <i>I</i>	$\frac{1}{(17/2^+)}$ (17/2 ⁻) (21/2 ⁺)	5.8 ps <i>11</i> 9.49 ns <i>21</i>	D D D	$\mu = +8.3 \ 4 \ (1995 \text{We12}, 2020 \text{StZV})$ $T_{1/2}: \ \text{from } \gamma(\text{t}) \ \text{of } 168\gamma, \ 487\gamma, \ 320\gamma, \ 1016\gamma, \ 1080\gamma, \ 1399\gamma \ (1995 \text{Ka06}).$ $Other: \ \approx 21 \ \text{ns} \ (1993 \text{We04}).$ $\mu: \ \text{from } g = +0.79 \ 4 \ (\text{TDPAD method}, \ 1995 \text{We12}).$ $Configuration = 40\% \ \pi g_{9/2}^2 (8^+) \otimes v g_{9/2}^{-1} + 21\% \ \pi g_{9/2}^2 (6^+) \otimes v g_{9/2}^{-1} + 15\% \ \pi g_{9/2}^2 (8^+) \otimes v g_{9/2}^{-1} (7/2^+) + 1\% \ v g_{9/2}^{-3} \ \text{gives theoretical } g = +0.79$
2124.0.2	(22/2+)		_	$(1995We^{1}2).$
3134.0 2	$(23/2^+)$	<1.1 ps	D	
3151.1 2	(21/2)	1.8 ps + 6 - 10	D	
3558.4 2	$(25/2^+)$	<1.0 ps	D	
3/01.8 2	(23/2)	0.0 (D	
3/16./2	$(25/2^+)$	0.8 ps 6	D	
4069.0 2	(25/2)	2.8 ps + 6 - 3	D	
4260.6 2	$(27/2^+)$	0.28 ps + 7 - 14	D	
45/5.4 2	(21/2)	0.69 ps $+28-14$	D	
4649.1 2	$(29/2^+)$	07	D	
4980.7 2	$(29/2^+)$	<0.7 ps	D	
5170.9 2	(29/2)	<0.76 ps	D	
5251.0 2	$(31/2^{+})$	2.3 ps 8	D _	
5340 25	(21/2-)	.0.7	r	
5420.0 2	(31/2)	<0.7 ps	U L	
5480 25		Ø	r	
5643.0 2	$(33/2^+)$	0.55 ^w ps 14	D	
6436.4 2	$(35/2^{-})$	2.6 ps 6	D	
6470.6 <i>3</i>	$(35/2^+)$		D	
6755.9 <i>3</i>	$(37/2^+)$		D	
7590.1 3	$(39/2^{-})$	1.39 [@] ps <i>14</i>	D	

 † From least-squares fit to $E\gamma$ data.

[‡] From 1995Za11, based on $\gamma(\theta)$ (1993We04,1993Ga19) and $\gamma\gamma(\theta)$ (DCO) of 1993We04. J^{π} values of g.s., 119 and 388 states [#] From RDDS (1995Za11), unless otherwise stated.
 [@] Effective T_{1/2} not corrected for feeding.

$\gamma(^{89}\text{Mo})$

E _i (level)	J_i^π	Eγ	I_{γ}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α@	Comments
118.8 387.5	(7/2 ⁺) (1/2 ⁻)	118.8 <i>I</i> 268.6 2	100 100	0.0 118.8	(9/2 ⁺) (7/2 ⁺)	(E3)	0.1494 24	 E_γ: from (HI,xnγ). B(E3)(W.u.)=0.117 10 E_γ: average of values from (HI,xnγ) and ⁸⁹Mo IT decay. Mult.: α(K)exp=0.28 6 (1991He04) in ⁸⁹Tc ε decay (12.9 s) gives δ(M4/E3)=0.39 12, but this admxiture of M4 gives unrealistically large B(M4)(W.u.). RUL=10 for B(M4)(W.u.) suggests negligible δ(M4/E3). Value of α(K)exp=0.28 6 (1991He04) agrees better with M3. Multipolarity assignment here is essentially from systematics supporting 1/2⁻ for the isomer and dominant E3 multipolarity to 7/2⁺ level, and only marginally supported by large value of α(K)exp.

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

$\gamma(^{89}Mo)$ (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	δ	α [@]	Comments
1000.7 1016.4 1645.8	$(11/2^+) (13/2^+) (11/2^+)$	1000.7 <i>1</i> 1016.3 <i>1</i> 629.5 2 1527.2 2 1645.9 2	100 100 18 7 100 <i>10</i> 44 8	$\begin{array}{c cccc} 0.0 & (9/2^+) \\ 0.0 & (9/2^+) \\ 1016.4 & (13/2^+) \\ 118.8 & (7/2^+) \\ 0.0 & (9/2^+) \end{array}$	(Q)			
2008.4	(13/2 ⁻)	362.6 <i>1</i> 991.8 <i>1</i>	34 5 100 7	$\begin{array}{c} 0.0 & (9/2^{+}) \\ 1645.8 & (11/2^{+}) \\ 1016.4 & (13/2^{+}) \end{array}$	D (D)			δ (Q/D)=0.00 +7-13 from $\gamma(\theta)$, -0.4 from DCO (1993Ka24).
2006 4	$(17/2^{+})$	1007.9 2	45 5	$1000.7 (11/2^+)$ $10164 (12/2^+)$	D			
2090.4	$(17/2^{-})$ $(17/2^{-})$	174.8 <i>I</i> 262.8 <i>I</i>	100 2 59 2	$2096.4 (17/2^+)$ $2008.4 (13/2^-)$	(E1) (E2)		0.0250	B(E1)(W.u.)= 3.4×10^{-5} 3 B(E2)(W u)= 60.5
2415.8	$(17/2^+)$	319.5 <i>I</i> 1399.3 <i>I</i>	42.9 <i>14</i> 100.0 <i>14</i>	$2096.4 (17/2^+)$ $1016.4 (13/2^+)$	0		0.0500	D(D2)((((d.)) 0.000
2454.5 2583.7	$(17/2^{-})$ $(21/2^{+})$	183.5 <i>I</i> 168.0 <i>I</i> 487.3 <i>I</i>	100 79 2 100 2	$\begin{array}{c} 2271.2 & (17/2^{-}) \\ 2415.8 & (17/2^{+}) \\ 2096.4 & (17/2^{+}) \end{array}$	[M1] (E2) (E2)		0.0481 0.185	B(M1)(W.u.)=0.59 <i>12</i> B(E2)(W.u.)=7.7 <i>3</i> B(E2)(W.u.)=0.0474 <i>16</i>
3134.0 3151.1	(23/2 ⁺) (21/2 ⁻)	550.3 <i>1</i> 696.8 <i>1</i> 879.8 <i>1</i>	100 4 <i>I</i> 100 <i>I</i>	2583.7 (21/2 ⁺) 2454.5 (17/2 ⁻) 2271.2 (17/2 ⁻)	[M1] [#] [E2] (E2)			B(M1)(W.u.)>0.12 B(E2)(W.u.)=3.1 <i>13</i> B(E2)(W.u.)=24 9 δ (O/Q)=0.00 +10-6 from $\gamma(\theta)$, +0.05 8 from DCO (1993Ka24).
3558.4	$(25/2^+)$	424.4 1	100	$3134.0 (23/2^+)$	[M1] [#]			B(M1)(W.u.)>0.29
3716.7	$(25/2^+)$ $(25/2^+)$	582.6 <i>1</i>	100	3131.1 (21/2) 3134.0 (23/2 ⁺)	D M1+E2	-3.4 17		B(M1)(W.u.)=0.007 +83-5; B(E2)(W.u.)>200 δ (Q/D)=-2.4 7 from $\gamma(\theta)$, -3.7 +17-13 from DCO (1993Ka24)
4069.0	(25/2 ⁻)	367.2 1	30 <i>3</i>	$3701.8 (23/2^{-})$	[M1] [#]			B(M1)(W.u.)=0.037 9 B(E2)(Wu)=10.1.22
4260.6	$(27/2^+)$	543.9 <i>1</i>	41 <i>4</i>	$3716.7 (25/2^+)$	(E2) [M1]			B(E2)(W.u.)=10.1.25 B(M1)(W.u.)=0.14.4 B(M1)(W.u.)=0.16.5
4575.4	$(27/2^{-})$	702.3 I 506.5 I	100 4	$4069.0 (25/2^{-})$	[M1]" [M1] [#]			B(M1)(W.u.)=0.165 B(M1)(W.u.)=0.2570
4649.1 4980.7	$(29/2^+)$ $(29/2^+)$	388.4 <i>I</i> 331.6 <i>I</i> 720.1 <i>I</i> 1264.0 <i>I</i>	100 73 8 97 11 100 11	$\begin{array}{c} 4260.6 & (27/2^+) \\ 4649.1 & (29/2^+) \\ 4260.6 & (27/2^+) \\ 3716.7 & (25/2^+) \end{array}$	D [M1] [M1] (E2)		0.0105	B(M1)(W.u.)>0.23 B(M1)(W.u.)>0.030 B(E2)(W.u.)>3.9
5170.9	(29/2 ⁻)	595.5 <i>1</i> 1101.9 <i>1</i>	$100\ 5$ 27 5	$4575.4 (27/2^{-})$ $4069.0 (25/2^{-})$	[M1] [#] [E2]			B(M1)(W.u.)>0.11 B(E2)(W.u.)>4.1
5251.0	(31/2 ⁺)	270.3 <i>1</i> 601.9 <i>1</i> 990.4 2	100 4 39 4 57 4	$\begin{array}{c} 4980.7 & (29/2^+) \\ 4649.1 & (29/2^+) \\ 4260.6 & (27/2^+) \end{array}$	[M1] [#] [M1] [E2]		0.0176	B(M1)(W.u.)=0.25 9 B(M1)(W.u.)=0.009 4 B(E2)(W.u.)=3.2 12
5420.0	(31/2 ⁻)	249.0 <i>1</i> 844.9 2	100 <i>5</i> 54 <i>5</i>	5170.9 (29/2 ⁻) 4575.4 (27/2 ⁻)	[M1] [#] (E2)		0.0217	B(M1)(W.u.)>1.3 B(E2)(W.u.)>27
5643.0 6436.4 6470.6	$(33/2^+)$ $(35/2^-)$ $(35/2^+)$	392.0 <i>1</i> 1016.4 <i>1</i> 827.6 <i>1</i>	100 100 100	5251.0 (31/2 ⁺) 5420.0 (31/2 ⁻) 5643.0 (33/2 ⁺)	[M1] [#] [E2]			B(M1)(W.u.)=0.66 <i>17</i> B(E2)(W.u.)=8.5 <i>20</i>
6755.9 7590.1	(37/2 ⁺) (39/2 ⁻)	285.3 <i>1</i> 1153.7 <i>1</i>	100 100	$\begin{array}{c} 6470.6 & (35/2^+) \\ 6436.4 & (35/2^-) \end{array}$	(E2)			B(E2)(W.u.)=8.4 9

[†] Photon branching ratios from 1995Za11. [‡] From (HI,xn γ). See details about ΔJ =0,1,2 assignments in this dataset.

Adopted Levels, Gammas (continued)

 $\gamma(^{89}Mo)$ (continued)

[#] Mult=dipole from $\gamma(\theta)$ and/or $\gamma\gamma(\theta)$ (DCO). [@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with "Frozen Orbitals" approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Adopted Levels, Gammas

 $^{89}_{42}Mo_{47}$