Adopted Levels

History			
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	ENSDF	30-Nov-2021

 $Q(\beta^{-})=12460 SY; S(n)=4150 SY; S(p)=14300 SY; Q(\alpha)=-9210 SY$ 2021Wa16

Estimated uncertainties (2021Wa16): 300 for $Q(\beta^-)$, 360 for S(n), 500 for S(p), 300 for $Q(\alpha)$.

 $Q(\beta^{-}n)=9280\ 300,\ S(2n)=7060\ 300,\ S(2p)=32240\ 580\ (syst,\ 2021Wa16).\ Q(\beta^{-}2n)=3750\ 300\ (syst),\ Q(\beta^{-}3n)=-240\ 300\ (syst)\ deduced by evaluator from mass excesses in 2021Wa16.$

1994Be24, 1997Be12: ⁸⁹As identified in Pb(²³⁸U,F),E=750 MeV/nucleon reaction from measured fission fragment yields with a fragment separator (FRS) at GSI using time-of-flight technique.

Mass measurement: 2008Ha23.

Theoretical calculations: consult NSR database at www.nndc.bnl.gov/nsr/ or additional document records in this dataset for three primary references for half-life and β^- n decay mode of ⁸⁹As.

Additional information 1.

⁸⁹As Levels

Comments

E(level)

0

 $\%\beta^{-}=100; \%\beta^{-}n=?; \%\beta^{-}2n=?$

Only β^- decay is possible, followed by delayed neutron emission, thus 100% β^- decay is assigned by inference. The β^- 3n decay mode is unlikely as Q(β^- 3n)=-240 300 (syst).

Theoretical $T_{1/2}=58.9$ ms, $\%\beta^{-}n=72$, $\%\beta^{-}2n=0$ (2019Mo01).

Theoretical $T_{1/2}^{-}=65.9$ ms, $\%\beta^{-}n=61.8$, $\%\beta^{-}2n=0.2$ (2016Ma12).

E(level): the observed fragments are assumed to belong to g.s. of $^{89}\mathrm{As.}$

 J^{π} : 5/2⁻ proposed from systematics (2021K007), 1/2⁻ in theoretical calculation (2019M001).

 $T_{1/2}$: half-life of decay of ⁸⁹As has not been measured. $T_{1/2}>300$ ns from time-of-flight of fission fragments (1997Be12), and >150 ns from time-of-flight in 1994Be24. General decreasing trend of half-lives with increasing neutron numbers in neutron-rich isotopes suggests $T_{1/2}<200$ ms from measured $T_{1/2}=945$ ms for ⁸⁶As, 484 ms for ⁸⁷As and 200 ms for ⁸⁸As. Values for ⁸⁶,⁸⁷,⁸⁸As are taken from ENSDF database (October 13, 2021 version). $T_{1/2}=220$ ms from systematics (2021Ko07).