|                                                                    | _                                                                          |                                                                                                                                               | History                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                     |                                                                                                                                                                      |  |  |  |  |
|--------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                                    | Туре                                                                       | A                                                                                                                                             | uthor                                                                                                                                                                                                                                                                                   | Citation                                                                                                                                                                                                                                                            | Literature Cutoff Date                                                                                                                                               |  |  |  |  |
|                                                                    | Full Evaluation                                                            | E. A. Mccutchan                                                                                                                               | and A. A. Sonzogni                                                                                                                                                                                                                                                                      | NDS 115, 135 (2014)                                                                                                                                                                                                                                                 | 1-Nov-2013                                                                                                                                                           |  |  |  |  |
| $Q(\beta^{-}) = -7.45 \times$<br>S(2n)=21802 $\alpha$ : Additional | (10 <sup>3</sup> 6; S(n)=12353 7<br>7; S(2p)=13683 6 (20<br>information 1. | ; S(p)=7899 6; Q(a<br>12Wa38).                                                                                                                | $(x) = -5404 \ 6 \ 2012 \text{V}$                                                                                                                                                                                                                                                       | Va38                                                                                                                                                                                                                                                                |                                                                                                                                                                      |  |  |  |  |
|                                                                    |                                                                            |                                                                                                                                               | <sup>88</sup> Zr Leve                                                                                                                                                                                                                                                                   | els                                                                                                                                                                                                                                                                 |                                                                                                                                                                      |  |  |  |  |
|                                                                    |                                                                            |                                                                                                                                               | Cross Reference (X                                                                                                                                                                                                                                                                      | REF) Flags                                                                                                                                                                                                                                                          |                                                                                                                                                                      |  |  |  |  |
|                                                                    |                                                                            | 00                                                                                                                                            |                                                                                                                                                                                                                                                                                         | 4 10 00                                                                                                                                                                                                                                                             |                                                                                                                                                                      |  |  |  |  |
|                                                                    | A<br>B<br>C<br>D                                                           | <sup>88</sup> Nb ε decay (<br><sup>88</sup> Nb ε decay (<br><sup>88</sup> Zr IT decay<br><sup>12</sup> C( <sup>84</sup> Sr, <sup>88</sup> Zrγ | $\begin{array}{cccc} (14.55 \text{ min}) & E & & & & & & & & & \\ (7.78 \text{ min}) & F & & & & & & & \\ (1.320 \ \mu \text{s}) & G & & & & & & & \\ & & & & & & & & & & & \\ & & & & $                                                                                                | <sup>4</sup> Ge( <sup>18</sup> O,4nγ) I 90<br><sup>5</sup> Sr( $\alpha$ ,2nγ) J 92<br><sup>9</sup> Y( $\alpha$ ,p4nγ)<br><sup>9</sup> Y( $\alpha$ ,p4nγ)                                                                                                            | Zr(p,t)<br>Mo(d, <sup>6</sup> Li)                                                                                                                                    |  |  |  |  |
| E(level) <sup>†</sup>                                              | $J^{\pi}$ $T_{1/2}^{\ddagger}$                                             | XREF                                                                                                                                          |                                                                                                                                                                                                                                                                                         | Commen                                                                                                                                                                                                                                                              | ts                                                                                                                                                                   |  |  |  |  |
| 0.0                                                                | 0 <sup>+</sup> 83.4 d <i>3</i>                                             | ABCDEFGHI J                                                                                                                                   | %ε=100<br>$T_{1/2}$ : from 1973St29<br>1984Pr01), 85 d (<br>δ< $r^2$ > <sup>90,88</sup> =0.061 fr                                                                                                                                                                                       | <ul> <li>Others: 82.6 d 2 (priva<br/>1953Hy52).</li> <li>n<sup>2</sup> 5 (2013An02, 2003Th</li> </ul>                                                                                                                                                               | ate communication quoted by                                                                                                                                          |  |  |  |  |
| 1057.03 4                                                          | 2 <sup>+</sup> 2.50 ps 28                                                  | ABCDEFGHI J                                                                                                                                   | $\mu$ =+0.60 22<br>J <sup><math>\pi</math></sup> : E2 1057 $\gamma$ to 0 <sup>+</sup> ,<br>T <sub>1/2</sub> : from DSAM i<br><sup>89</sup> Y(p,2n $\gamma$ ).                                                                                                                           | L(p,t)=2.<br>n ${}^{12}C({}^{84}Sr, {}^{88}Zr\gamma)$ . Other                                                                                                                                                                                                       | : 0.83 ps +4-2 from DSAM in                                                                                                                                          |  |  |  |  |
| 1521.4 7                                                           | 0+                                                                         | HIJ                                                                                                                                           | $\mu$ : from transient ne $J^{\pi}$ : L(p,t)=0.                                                                                                                                                                                                                                         | la technique in <sup>12</sup> C(° Sr,                                                                                                                                                                                                                               | $\sum r\gamma$ ).                                                                                                                                                    |  |  |  |  |
| 1817.86 6                                                          | 2 <sup>+</sup> 0.59 ps 5                                                   | B D FGHIJ                                                                                                                                     | $J^{\pi}$ : L(d, <sup>6</sup> Li)=2; L(p,<br>T <sub>1/2</sub> : from DSAM i<br><sup>89</sup> Y(p,2n\gamma).                                                                                                                                                                             | t)=(2), $\gamma\gamma(\theta)$ in <sup>89</sup> Y(p,2r<br>n <sup>12</sup> C( <sup>84</sup> Sr, <sup>88</sup> Zr $\gamma$ ). Other                                                                                                                                   | rγ).<br>: 0.21 ps 9 from DSAM in                                                                                                                                     |  |  |  |  |
| 2139.59 5                                                          | 4 <sup>+</sup> 1.52 ps <i>14</i>                                           | ABCDEFGHI J                                                                                                                                   | $\mu = +2.6 7$ $J^{\pi}: L(p,t) = 4.$ $T_{1/2}: \text{ from DSAM i}$ $\mu: \text{ from transient fie}$                                                                                                                                                                                  | n ${}^{12}C({}^{84}Sr, {}^{88}Zr\gamma).$<br>ld technique in ${}^{12}C({}^{84}Sr.$                                                                                                                                                                                  | <sup>88</sup> Ζrγ).                                                                                                                                                  |  |  |  |  |
| 2231.0 <sup>@</sup> 5                                              | $0^{+}$                                                                    | HIJ                                                                                                                                           | $J^{\pi}$ : L(p,t)=0.                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                   |                                                                                                                                                                      |  |  |  |  |
| 2455.88 7                                                          | 3 <sup>-</sup> 1.94 ps 21                                                  | B D FGHIJ                                                                                                                                     | $J^{\pi}$ : L(p,t)=3.                                                                                                                                                                                                                                                                   | 120(840 887)                                                                                                                                                                                                                                                        |                                                                                                                                                                      |  |  |  |  |
| 2539.00 6<br>2568.3 3<br>2605.20 14<br>2673.7 5                    | 5 <sup>-</sup><br>2 <sup>+</sup><br>4 <sup>+</sup>                         | ABC EFGHI<br>HIJ<br>B F I<br>B                                                                                                                | $I_{1/2}$ : from DSAM I<br>$J^{\pi}$ : L(p,t)=5.<br>$J^{\pi}$ : L(p,t)=2.<br>$J^{\pi}$ : L(p,t)=4.                                                                                                                                                                                      | n <sup>12</sup> C( <sup>(*)</sup> Sr, <sup>(*)</sup> Zry).                                                                                                                                                                                                          |                                                                                                                                                                      |  |  |  |  |
| 2801.13 8                                                          | 5-                                                                         | AB EFGHIJ                                                                                                                                     | $J^{\pi}$ : L(p,t)=5.                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                     |                                                                                                                                                                      |  |  |  |  |
| 2810.80 6<br>2887.79 6                                             | 6 <sup>+</sup><br>8 <sup>+</sup> 1.320 μs 25                               | A C EFGHI<br>5 A C EFGHI                                                                                                                      | $J^{\pi}$ : L(p,t)=6.<br>%IT=100<br>Q=+0.51 3; $\mu$ =-1.8<br>$J^{\pi}$ : E2 77 $\gamma$ to 6 <sup>+</sup> , L<br>T <sub>1/2</sub> : from $\gamma$ (t) (197<br>1.28 $\mu$ s 10, 1.75 $\mu$<br>$\mu$ : from g=-0.2264<br>(1978Ha52). Othe<br>Q: from time-different<br>implanted in non- | 11 16<br>(p,t)=(8,6).<br>(8Ha52). Others: 1.41 $\mu$ s<br><i>s</i> 20 from $\gamma$ (t) in <sup>89</sup> Y(p,<br>20 measured by $\gamma$ (H, $\theta$ ,t)<br>er: g=-0.20 2 from <sup>89</sup> Y(p)<br>ntial perturbed $\gamma$ -ray ang<br>cubic crystals (1985Pa00 | +12-9 (2004Ch35) using $\gamma$ (t);<br>2n $\gamma$ ).<br>in heavy-ion reactions<br>p,2n $\gamma$ ).<br>gular distribution of ions<br>b). Sim determined by 1086Be06 |  |  |  |  |
| 2888 <i>3</i><br>2928 <i>3</i>                                     | (2 <sup>+</sup> )<br>3 <sup>-</sup>                                        | I<br>I                                                                                                                                        | $J^{\pi}$ : L(p,t)=(2).<br>$J^{\pi}$ : L(p,t)=3.                                                                                                                                                                                                                                        | erjours (1905ruo)                                                                                                                                                                                                                                                   | ,                                                                                                                                                                    |  |  |  |  |

Continued on next page (footnotes at end of table)

# Adopted Levels, Gammas (continued)

# <sup>88</sup>Zr Levels (continued)

| E(level) <sup>†</sup>  | $\mathbf{J}^{\pi}$          | T <sub>1/2</sub> ‡ |        | XREF | Comments                                                                                                                                                                                                       |
|------------------------|-----------------------------|--------------------|--------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2989.67 7              | 5-                          |                    | В      | HI   | $J^{\pi}$ : L(p,t)=5.                                                                                                                                                                                          |
| 2998.4 3               |                             |                    | В      |      |                                                                                                                                                                                                                |
| 3027 3                 | 2+                          |                    |        | I    | $J^{\pi}$ : L(p,t)=2.                                                                                                                                                                                          |
| 3032.77 8              | 3-                          |                    | В      | I    | $J^{\pi}$ : L(p,t)=3.                                                                                                                                                                                          |
| $3074.9^{@}$ 3         | $(4^{+})$                   |                    |        | нт   | $J^{\pi}$ : L(n,t)=(4).                                                                                                                                                                                        |
| $3003.6^{\circ}$       | 5-                          |                    |        | υт   | $I^{\pi}$ . I (p,t) – 5                                                                                                                                                                                        |
| 3093.0 5               | $(6^+)$                     |                    | ۸      | пт   | J. $L(p,t)=J$ .<br>$I^{\pi}$ , log $ft=7.5$ from $(8^+)$ , 1074 $\mu$ to $4^+$                                                                                                                                 |
| 3213.70 11             | (0)                         |                    | R      |      | $J : \log \beta l = 1.5  \text{Hom}  (8^{-}),  10/4  y  \text{to}  4^{-}$                                                                                                                                      |
| 3277 01 8              | $(3^{-} 4 5^{-})$           |                    | B      |      | $I^{\pi}$ . 287 $\gamma$ to 5 <sup>-</sup> 821 $\gamma$ to 3 <sup>-</sup>                                                                                                                                      |
| $3.30 \times 10^3$     | (5,1,5)                     |                    | 5      | т    | 3.2077.005.0217.005.                                                                                                                                                                                           |
| 3374 37 9              | $(3^{-} 4 5^{-})$           |                    | R      | -    | $I^{\pi}$ : 573x to 5 <sup>-</sup> 918 5x to 3 <sup>-</sup>                                                                                                                                                    |
| 3300 70 6              | (5,1,5)<br>8 <sup>+</sup>   | 21  ps l           | Δ      | FECH | $I^{\pi}$ : from $\gamma(\theta)$ and linear polarization in <sup>74</sup> Ge( <sup>18</sup> O (Inv))                                                                                                          |
| 3426 47 17             | 0                           | 21 ps 1            | R      | LIGH | $\mathbf{J}$ . from $\gamma(0)$ and finear polarization in $OC(-0, -1)\gamma$ .                                                                                                                                |
| $3.43 \times 10^3$     | $(0^{+})$                   |                    | D      | т    | $I^{\pi}$ , I (p t)-(0)                                                                                                                                                                                        |
| 3/83 63 13             | (0)<br>$(7^{-})$            |                    | ۵      | FEC  | J. $L(p,t) = (0)$ .<br>$I^{\pi}$ : 7, 0, 11 from $\nu(\theta)$ and linear polarization of populating 1003 $\nu$                                                                                                |
| 5405.05 15             | (r)                         |                    | л      | LIG  | $J = 7.5,11$ from $\gamma(0)$ and fine a polarization of populating 1005 $\gamma$                                                                                                                              |
| 3568 18 15             | $(3.4^{+})$                 |                    | R      |      | III $Ge(-0,4II\gamma), 944.5\gamma = 0.5$ .<br>$I^{\pi} \cdot \log f_{t-6} \otimes from (A^{-}) = 2511\gamma \text{ to } 2^{+}$                                                                                |
| 2617 44 24             | (3, +)                      |                    | ۲<br>۲ | EC   | $\pi$ 1–7 from $\alpha(0)$ in $\frac{89}{1-0.5}$ V( $\alpha$ n/m) $\frac{917}{1-0.5}$ to 5 <sup>-</sup>                                                                                                        |
| 2627 76 15             | (7)<br>(2.4 <sup>+</sup> )  |                    | A<br>D | гG   | $J : J = 7 \text{ from } \gamma(0) \text{ fit}^{-1} \Gamma(0, p4 \text{ fr}), \delta 1 / \gamma \text{ to } J :$<br>$I^{\pi} : \log f_{\pi} = 6.7 \text{ from } (4^{-1}) \cdot 2581 \omega \text{ to } 2^{+1}$ |
| 3875 04 14             | (3, +)<br>$(3^{-} 4 5^{-})$ |                    | B      |      | J = 10g f = 0.7 from (4-), 23017 to 2 .<br>$I^{\pi} \cdot 13360$ to $5^{-} - 1/100$ to $3^{-}$                                                                                                                 |
| 3938 28 14             | (3, 4, 5)                   |                    | R      |      | $I^{\pi}$ : log $dt = 6.3$ from $(4^{-})$                                                                                                                                                                      |
| 3947 58 13             | (3,4,5)                     |                    | B      |      | $J^{\pi}: \log \psi = 0.5 \text{ from } (4^{-}).$                                                                                                                                                              |
| 3968 2 3               | $(3^{-}45)$                 |                    | B      |      | $I^{\pi}$ : log $f_{t}=6.8$ from (4 <sup>-</sup> ). 1429v to 5 <sup>-</sup>                                                                                                                                    |
| $3.99 \times 10^{3}$ ? | (5,1,5)                     |                    | 5      | т    | Possibly identical to one of the neighboring levels                                                                                                                                                            |
| 4024.9.3               | $(3^{-} 45)$                |                    | в      | -    | $I^{\pi} \log f_{t=6} 9 \text{ from } (4^{-}) 1224 \text{ v to } 5^{-}$                                                                                                                                        |
| 4059.22 14             | $(3^{-},4,5^{-})$           |                    | B      |      | $J^{\pi}$ : 1520y to 5 <sup>-</sup> , 1604y to 3 <sup>-</sup> .                                                                                                                                                |
| 4084.22 13             | $(3^{-},4.5)$               |                    | В      |      | $J^{\pi}$ : log ft=6.1 from (4 <sup>-</sup> ), 1095 $\gamma$ to 5 <sup>-</sup> .                                                                                                                               |
| 4112.38 13             | (3,4.5)                     |                    | В      |      | $J^{\pi}$ : log ft=6.5 from (4 <sup>-</sup> ).                                                                                                                                                                 |
| 4155.5 4               | (3,4,5)                     |                    | В      |      | $J^{\pi}$ : log ft=7.1 from (4 <sup>-</sup> ).                                                                                                                                                                 |
| $4.17 \times 10^3$ ?   |                             |                    |        | I    | Possibly identical to one of the neighboring levels.                                                                                                                                                           |
| 4206.1 3               | $(3,4,5^{-})$               |                    | В      |      | $J^{\pi}$ : log ft=6.6 from (4 <sup>-</sup> ), 1750 $\gamma$ to 3 <sup>-</sup> .                                                                                                                               |
| 4208.17 10             | $(3^{-}, 4, 5^{-})$         |                    | В      |      | $J^{\pi}$ : 1407 $\gamma$ to 5 <sup>-</sup> , 1752 $\gamma$ to 3 <sup>-</sup> .                                                                                                                                |
| 4237.0 4               | $(7,8^+)$                   |                    | Α      |      | $J^{\pi}$ : log ft=7.1 from (8 <sup>+</sup> ), 1426 $\gamma$ to 6 <sup>+</sup> .                                                                                                                               |
| 4307.9 <i>3</i>        | $(3^{-},4,5^{-})$           |                    | В      |      | $J^{\pi}$ : 1319 $\gamma$ to 5 <sup>-</sup> , 1852 $\gamma$ to 3 <sup>-</sup> .                                                                                                                                |
| 4335.6 4               | (3,4 <sup>+</sup> )         |                    | В      |      | $J^{\pi}$ : log <i>ft</i> =7.0 from (4 <sup>-</sup> ), 3278.5 $\gamma$ to 2 <sup>+</sup> .                                                                                                                     |
| 4348.3 <i>3</i>        |                             |                    | Α      |      |                                                                                                                                                                                                                |
| $4.37 \times 10^3$ ?   |                             |                    |        | I    | Possibly identical to one of the neighboring levels.                                                                                                                                                           |
| 4388.34 25             | $(7,8^+)$                   |                    | Α      |      | $J^{\pi}$ : log <i>ft</i> =6.9 from (8 <sup>+</sup> ), 1175 $\gamma$ to (6 <sup>+</sup> ).                                                                                                                     |
| 4413.07 11             | 10+                         | <1.4 ps            |        | EF   | $J^{\pi}$ : E2 1022 $\gamma$ to 8 <sup>+</sup> , $\gamma(\theta)$ and linear polarization in $^{74}$ Ge( $^{18}$ O.4n $\gamma$ ).                                                                              |
| 4461.88 22             | $(7,8^{+})$                 |                    | Α      |      | $J^{\pi}$ : log ft=6.4 from (8 <sup>+</sup> ), 1652 $\gamma$ to 6 <sup>+</sup> .                                                                                                                               |
| 4486.31 12             | (9 <sup>-</sup> )           |                    |        | EFG  | $J^{\pi}$ : (E2) 1003 $\gamma$ to (7 <sup>-</sup> ), (E1) 1096 $\gamma$ to 8 <sup>+</sup> .                                                                                                                    |
| 4612.29 11             | 9+                          | <0.17 ns           | Α      | EFG  | J <sup><math>\pi</math></sup> : 7 <sup>+</sup> ,9 <sup>+</sup> from $\gamma(\theta)$ and linear polarization in <sup>74</sup> Ge( <sup>18</sup> O,4n $\gamma$ ).                                               |
|                        |                             |                    |        |      | Probable 199 $\gamma$ to 10 <sup>+</sup> .                                                                                                                                                                     |
| 4672.7 <i>3</i>        | (3 <sup>-</sup> ,4,5)       |                    | В      |      | $J^{\pi}$ : log ft=6.8 from (4 <sup>-</sup> ), 1871.5 $\gamma$ to 5 <sup>-</sup> .                                                                                                                             |
| 4713.08 11             | 10 <sup>-#</sup>            | 2.25 ns 17         |        | EFG  |                                                                                                                                                                                                                |
| 4797.63 11             | 11 <sup>-#</sup>            | 50 ps 4            |        | EFG  |                                                                                                                                                                                                                |
| 4934.5 <i>3</i>        | $(7,8^{+})$                 | 1                  | Α      |      | $J^{\pi}$ : log ft=6.2 from (8 <sup>+</sup> ), 1721 $\gamma$ to (6 <sup>+</sup> ).                                                                                                                             |
| 5087.9 <i>3</i>        | $(7,8^+)$                   |                    | Α      |      | $J^{\pi}$ : log <i>ft</i> =6.5 from (8 <sup>+</sup> ), 2277 $\gamma$ to 6 <sup>+</sup> .                                                                                                                       |
| 5166.2? 4              | (10,11,12)#                 | 0.66 ps 14         |        | EF   | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                          |
| 5229.47 13             | 12+                         | 10 ps 1            |        | EFG  | $J^{\pi}$ : E2 816 $\gamma$ to 10 <sup>+</sup> .                                                                                                                                                               |
| 5583 85 12             | 12 <sup>-#</sup>            | <0.7 ps            |        | EFG  | ,                                                                                                                                                                                                              |
| 5665 01 15             | 12+#                        | 0.28 - 10          |        | EEC  |                                                                                                                                                                                                                |
| 2002.91 12             | 12                          | 0.20 ps 10         |        | LLQ  |                                                                                                                                                                                                                |

Continued on next page (footnotes at end of table)

## Adopted Levels, Gammas (continued)

#### <sup>88</sup>Zr Levels (continued)

| E(level) <sup>†</sup> | $J^{\pi}$                       | T <sub>1/2</sub> ‡ | XREF | Comments                                                                                                                                                                            |
|-----------------------|---------------------------------|--------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5787.2 5              | (7,8,9)                         |                    | A    | $J^{\pi}$ : log <i>ft</i> =6.2 from (8 <sup>+</sup> ).                                                                                                                              |
| 5950.75 16            | (13)+                           | <0.10 ps           | EFG  | $J^{\pi}$ : (11,13) <sup>+</sup> from $\gamma(\theta)$ and transition strength in <sup>74</sup> Ge( <sup>18</sup> O,4n $\gamma$ ). High spin favored in heavy ion fusion reactions. |
| 6000.8? <i>3</i>      | $(13)^{-\#}$                    | <0.7 ps            | Е    |                                                                                                                                                                                     |
| 6032.52? 13           | $(12^{-})^{\#}$                 |                    | Е    |                                                                                                                                                                                     |
| 6192.94 12            | 13-                             | 1.70 ps 14         | E    | $J^{\pi}$ : E2 1395 $\gamma$ to 11 <sup>-</sup> .                                                                                                                                   |
| 6238.79 16            | (14) <sup>+#</sup>              | 1.0 ps 3           | E    |                                                                                                                                                                                     |
| 6501.32 24            | $(14)^{+\#}$                    | 0.16 ps 3          | Е    |                                                                                                                                                                                     |
| 6578.2 5              |                                 |                    | E    |                                                                                                                                                                                     |
| 6765.33 23            | (14) <sup>-#</sup>              | ≤0.49 ps           | E    |                                                                                                                                                                                     |
| 6826.66 <i>23</i>     | (15) <sup>+#</sup>              | 0.10 ps 2          | Е    |                                                                                                                                                                                     |
| 7228.2 3              | $(15)^{-\#}$                    | ≤0.8 ps            | Е    |                                                                                                                                                                                     |
| 7431.9 4              |                                 | 0.10 ps 3          | E    |                                                                                                                                                                                     |
| 7536.5 4              | (15 <sup>-</sup> ) <sup>#</sup> | ≤0.33 ps           | E    |                                                                                                                                                                                     |
| 7878.9 4              | (16 <sup>-</sup> ) <sup>#</sup> | ≤0.50 ps           | E    |                                                                                                                                                                                     |
| 8200.2 5              | (17 <sup>-</sup> ) <sup>#</sup> | 0.3 ps +4-1        | E    |                                                                                                                                                                                     |
| 8925.2 5              | (18 <sup>-</sup> ) <sup>#</sup> | <0.3 ps            | Е    |                                                                                                                                                                                     |
| 9912.6? 5             | (19 <sup>-</sup> ) <sup>#</sup> | >0.7 ps            | Е    |                                                                                                                                                                                     |
| 10557.3? 9            | (20) <sup>#</sup>               | ≤0.1 ps            | Е    |                                                                                                                                                                                     |
| 11199.7? <i>11</i>    | (21) <sup>#</sup>               | 0.22 ps 14         | Е    |                                                                                                                                                                                     |

<sup>†</sup> Level energies with  $\Delta E \leq 1$  keV are from a least-squares fit to the Adopted Gammas, except where noted. Those with  $\Delta E > 1$ keV are from (p,t).

<sup>‡</sup> From Doppler-shift attenuation and Recoil-distance Doppler-shift in <sup>74</sup>Ge(<sup>18</sup>O,4n $\gamma$ ), except where noted. <sup>#</sup> From  $\gamma(\theta)$ , linear polarization and  $\gamma$  decay pattern in <sup>74</sup>Ge(<sup>18</sup>O,4n $\gamma$ ).

<sup>(a)</sup> From <sup>89</sup>Y(p,2n $\gamma$ ). 2009Br05 quote precise level energies but do not provide the  $\gamma$ -ray energies of the depopulating transitions.

| 1                      |                      |                        |                        |           | A                                   | Adopted Lev         | vels, Gammas               | (continued)         | )                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------|----------------------|------------------------|------------------------|-----------|-------------------------------------|---------------------|----------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                      |                        |                        |           |                                     |                     | $\gamma(^{88}\mathrm{Zr})$ |                     |                                                                                                                                                                                                                                                                                                                                                                                                                      |
| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger}$ | $E_f$ J   | $\int_{f}^{\pi}$ Mult. <sup>‡</sup> | $\delta^{\ddagger}$ | α                          | $I_{(\gamma+ce)}$ # | Comments                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1057.03                | 2+                   | 1057.01 4              | 100                    | 0.0 0     | + E2                                |                     | 5.91×10 <sup>-4</sup>      |                     | $\alpha(K)=0.000522 \ 8; \ \alpha(L)=5.79\times10^{-5} \ 9; \\ \alpha(M)=1.003\times10^{-5} \ 14; \ \alpha(N)=1.422\times10^{-6} \ 20; \\ \alpha(O)=9.95\times10^{-8} \ 14 \\ B(E2)(Wu)=7.4.9$                                                                                                                                                                                                                       |
| 1521.4                 | 0+                   | 464.5                  |                        | 1057.03 2 | + [E2]                              |                     | 0.00524                    | 100                 | $ce(K)/(\gamma+ce)=0.00457 7; ce(L)/(\gamma+ce)=0.000536 8; ce(M)/(\gamma+ce)=9.31\times10^{-5} 13; ce(N)/(\gamma+ce)=1.304\times10^{-5} 19 ce(O)/(\gamma+ce)=8.51\times10^{-7} 12 \alpha(K)=0.00459 7; \alpha(L)=0.000539 8; \alpha(M)=9.36\times10^{-5} 14; \alpha(N)=1.311\times10^{-5} 19; \alpha(O)=8.56\times10^{-7} 12$                                                                                       |
|                        |                      | 1521.2                 |                        | 0.0 0     | + (E0)                              |                     |                            | 0.05 1              | Mult.: from ce. No corresponding $\gamma$ observed.<br>X(E0/E2)=0.0050 /1 (2005Ki02).                                                                                                                                                                                                                                                                                                                                |
| 1817.86                | 2+                   | 760.76 9               | 100.0 27               | 1057.03 2 | + M1+E2                             | +0.26 4             | 1.23×10 <sup>-3</sup>      |                     | $         α(K) = 0.001083 \ 16; \ \alpha(L) = 0.0001195 \ 17;          α(M) = 2.07 \times 10^{-5} \ 3; \ \alpha(N) = 2.95 \times 10^{-6} \ 5;          α(O) = 2.10 \times 10^{-7} \ 3          B(E2)(W.u.) = 6.5 \ 20; \ B(M1)(W.u.) = 0.051 \ 5          Mult.: D+Q from γγ(θ) in 89Y(p,2nγ), Δπ=no from level scheme.          δ: from γγ(θ) in 89Y(p,2nγ). Other: -0.10 \ 13 from γ(θ) in 86Sr(α \ 2nγ)         $ |
|                        |                      | 1817.89 <i>9</i>       | 56.7 12                | 0.0 0     | + [E2]                              |                     | 4.14×10 <sup>-4</sup>      |                     | $\alpha(K)=0.0001716\ 24;\ \alpha(L)=1.87\times10^{-5}\ 3;\ \alpha(M)=3.23\times10^{-6}\ 5;\ \alpha(N)=4.60\times10^{-7}\ 7;\ \alpha(O)=3.28\times10^{-8}\ 5$<br>B(E2)(W.u.)=0.75 7<br>I <sub><math>\gamma</math></sub> : from <sup>88</sup> Nb $\varepsilon$ decay (7.78 min). Others: 21 21<br>from <sup>89</sup> V( $\alpha$ p4pa) and 72 from <sup>89</sup> V( $\alpha$ papa)                                    |
| 2139.59                | 4+                   | 1082.53 4              | 100                    | 1057.03 2 | + E2                                |                     | 5.61×10 <sup>-4</sup>      |                     | $\alpha(K) = 0.00495 \ 7; \ \alpha(L) = 5.48 \times 10^{-5} \ 8; \alpha(M) = 9.50 \times 10^{-6} \ 14; \ \alpha(N) = 1.347 \times 10^{-6} \ 19; \alpha(O) = 9.44 \times 10^{-8} \ 14  \Omega(D) = 0.44 \times 10^{-8} \ 14 $                                                                                                                                                                                         |
| 2455.88                | 3-                   | 316.3 2                | 3.74 15                | 2139.59 4 | + [E1]                              |                     | 0.00421                    |                     | $\begin{aligned} & \alpha(\mathbf{K}) = 0.00371 \ 6; \ \alpha(\mathbf{L}) = 0.000411 \ 6; \\ & \alpha(\mathbf{M}) = 7.10 \times 10^{-5} \ 10; \ \alpha(\mathbf{N}) = 1.003 \times 10^{-5} \ 15; \\ & \alpha(\mathbf{O}) = 6.87 \times 10^{-7} \ 10 \end{aligned}$                                                                                                                                                    |
|                        |                      | 638.00 <i>9</i>        | 100 3                  | 1817.86 2 | + [E1]                              |                     | 7.33×10 <sup>-4</sup>      |                     | B(E1)(W.u.)=0.000184 22<br>$\alpha(K)=0.000648 9; \alpha(L)=7.10\times10^{-5} 10;$<br>$\alpha(M)=1.228\times10^{-5} 18; \alpha(N)=1.742\times10^{-6} 25$<br>$\alpha(O)=1.223\times10^{-7} 18$<br>B(E1)(W.u.)=0.00060 7                                                                                                                                                                                               |
|                        |                      | 1399.40 20             | 9.5 11                 | 1057.03 2 | + [E1]                              |                     | 3.28×10 <sup>-4</sup>      |                     | $\alpha(K) = 0.0001391 \ 20; \ \alpha(L) = 1.502 \times 10^{-5} \ 21; \alpha(M) = 2.60 \times 10^{-6} \ 4; \ \alpha(N) = 3.70 \times 10^{-7} \ 6;$                                                                                                                                                                                                                                                                   |

 $^{88}_{40}{
m Zr}_{48}{
m -4}$ 

|   |                        |                      |                                                                         |                                                |                               |                                                    | Add                | opted Levels                | , Gammas (cont          | tinued)                                                                                                                                                                                                                                                                                                                |
|---|------------------------|----------------------|-------------------------------------------------------------------------|------------------------------------------------|-------------------------------|----------------------------------------------------|--------------------|-----------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                        |                      |                                                                         |                                                |                               |                                                    |                    | $\gamma$ ( <sup>88</sup> Zr | ) (continued)           |                                                                                                                                                                                                                                                                                                                        |
|   | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$                                                  | $I_{\gamma}^{\dagger}$                         | $\mathbf{E}_{f}$              | $\mathbf{J}_f^{\pi}$                               | Mult. <sup>‡</sup> | $\delta^{\ddagger}$         | α                       | Comments                                                                                                                                                                                                                                                                                                               |
|   |                        | _                    |                                                                         |                                                |                               |                                                    |                    |                             |                         | $\begin{array}{l} \alpha({\rm O}) = 2.64 \times 10^{-8} \ 4 \\ {\rm B(E1)(W.u.)} = 5.4 \times 10^{-6} \ 9 \\ {\rm I}_{\gamma}: \ {\rm from}^{\ 88} {\rm Nb} \ \varepsilon \ {\rm decay} \ (7.78 \ {\rm min}). \ {\rm Other:} \ 11.8 \ {\rm from} \\ {}^{89} {\rm Y}({\rm p}, 2{\rm n}\gamma). \end{array}$             |
|   | 2539.00                | 5-                   | 399.41 <i>3</i>                                                         | 100                                            | 2139.59                       | 4+                                                 | E1                 |                             | 0.00227                 | $\alpha$ (K)=0.00201 3; $\alpha$ (L)=0.000221 3; $\alpha$ (M)=3.83×10 <sup>-5</sup> 6;<br>$\alpha$ (N)=5.41×10 <sup>-6</sup> 8; $\alpha$ (O)=3.75×10 <sup>-7</sup> 6                                                                                                                                                   |
|   | 2568.3                 | 2+                   | 1511.3 <i>3</i>                                                         | 100                                            | 1057.03                       | 2+                                                 | M1+E2              | -0.54 22                    | 3.61×10 <sup>-4</sup> 6 | $\alpha(K)=0.000252 \ 4; \ \alpha(L)=2.74\times10^{-5} \ 4; \ \alpha(M)=4.75\times10^{-6} \ 7; \ \alpha(N)=6.76\times10^{-7} \ 10; \ \alpha(O)=4.84\times10^{-8} \ 8$<br>Mult.: D+Q from $\gamma\gamma(\theta)$ in <sup>89</sup> Y(p,2n $\gamma$ ), $\Delta\pi$ =no from level                                         |
|   |                        |                      |                                                                         |                                                |                               |                                                    |                    |                             |                         | $δ$ : from $\gamma\gamma(\theta)$ in <sup>89</sup> Y(p,2nγ).                                                                                                                                                                                                                                                           |
|   | 2605.20                | 4+                   | 465. 2<br>1548.2 2                                                      | 100.0 9<br>68 5                                | 2139.59<br>1057.03            | 4+<br>2+                                           | [E2]               |                             | 3.67×10 <sup>-4</sup>   | $\alpha(K)=0.000234 \ 4; \ \alpha(L)=2.55\times10^{-5} \ 4; \ \alpha(M)=4.43\times10^{-6} \ 7; \ \alpha(N)=6.29\times10^{-7} \ 9; \ \alpha(O)=4.47\times10^{-8} \ 7$                                                                                                                                                   |
|   | 2673.7<br>2801.13      | 5-                   | 134.6 <i>5</i><br>262.04 <i>13</i>                                      | 100<br>100 <i>3</i>                            | 2539.00<br>2539.00            | 5-<br>5-                                           | M1(+E2)            | +0.3 6                      | 0.017 7                 | $\alpha$ (K)=0.015 6; $\alpha$ (L)=0.0017 9; $\alpha$ (M)=0.00030 15;<br>$\alpha$ (N)=4.3×10 <sup>-5</sup> 20; $\alpha$ (O)=2.9×10 <sup>-6</sup> 10                                                                                                                                                                    |
| η |                        |                      |                                                                         |                                                |                               |                                                    |                    |                             |                         | Mult.: D(+Q) from $\gamma(\theta)$ in <sup>86</sup> Sr( $\alpha$ ,2n $\gamma$ ), $\Delta \pi$ =no from level scheme.<br>$\delta$ : from $\gamma\gamma(\theta)$ in <sup>89</sup> Y(n,2n $\gamma$ ).                                                                                                                     |
|   |                        |                      | 661.60 <i>10</i>                                                        | 19.6 <i>10</i>                                 | 2139.59                       | 4+                                                 | [E1]               |                             | 6.76×10 <sup>-4</sup>   | $\alpha(K) = 0.000598 \ 9; \ \alpha(L) = 6.54 \times 10^{-5} \ 10; \ \alpha(M) = 1.132 \times 10^{-5}$<br>$16; \ \alpha(N) = 1.606 \times 10^{-6} \ 23$<br>$\alpha(D) = 1.128 \times 10^{-7} \ 16$                                                                                                                     |
|   | 2810.80                | 6+                   | 271.81 2                                                                | 49.9 18                                        | 2539.00                       | 5-                                                 | E1                 |                             | 0.00637                 | $\alpha(G) = 1.126 \times 10^{-10}$<br>$\alpha(K) \exp = 0.0046 \ 12$<br>$\alpha(K) = 0.00562 \ 8; \ \alpha(L) = 0.000623 \ 9; \ \alpha(M) = 0.0001077 \ 15;$<br>$\alpha(N) = 1.518 \times 10^{-5} \ 22$<br>$\alpha(O) = 1.034 \times 10^{-6} \ 15$<br>$\alpha(K) \exp i \ from \ ^{88}Nh \ c \ decay \ (14.55 \ min)$ |
|   |                        |                      | 671.20 4                                                                | 100.0 13                                       | 2139.59                       | 4+                                                 | E2                 |                             | 0.00181                 | $\alpha(K)$ eq. 10m - 10 <i>v</i> decay (14.55 mm).<br>$\alpha(K)$ =0.001595 23; $\alpha(L)$ =0.000182 3; $\alpha(M)$ =3.15×10 <sup>-5</sup> 5;<br>$\alpha(N)$ =4.44×10 <sup>-6</sup> 7; $\alpha(O)$ =3.02×10 <sup>-7</sup> 5                                                                                          |
|   | 2887.79                | 8+                   | 76.99 1                                                                 | 100                                            | 2810.80                       | 6+                                                 | E2                 |                             | 2.87                    | $\alpha(K)=2.29$ 4; $\alpha(L)=0.487$ 7; $\alpha(M)=0.0856$ 12; $\alpha(N)=0.01103$<br>16; $\alpha(O)=0.000355$ 5<br>B(E2)(W.u.)=1.75 4<br>Wult + from K/L/M measured in <sup>88</sup> Nb a decay (14.55 min)                                                                                                          |
|   | 2989.67                | 5-                   | 189.1 <i>3</i><br>384.6 <i>3</i><br>450.52 <i>16</i>                    | 1.20 <i>15</i><br><1.3<br>100.0 <i>30</i>      | 2801.13<br>2605.20<br>2539.00 | 5-<br>4+<br>5-                                     |                    |                             |                         | Mult.: from $K/L/M$ measured in <sup>23</sup> Nb $\varepsilon$ decay (14.55 min).                                                                                                                                                                                                                                      |
|   |                        |                      | 533.82 9                                                                | 46.3 15                                        | 2455.88                       | 3-                                                 | [E2]               |                             | 0.00345                 | $\alpha$ (K)=0.00303 5; $\alpha$ (L)=0.000351 5; $\alpha$ (M)=6.10×10 <sup>-5</sup> 9;<br>$\alpha$ (N)=8.56×10 <sup>-6</sup> 12; $\alpha$ (O)=5.68×10 <sup>-7</sup> 8                                                                                                                                                  |
|   | 2998.4                 |                      | 850.0 <i>1</i><br>542.9 <i>5</i><br>1180.4 <sup><i>b</i></sup> <i>4</i> | 7.5 <i>3</i><br>100 <i>50</i><br>370 <i>60</i> | 2139.59<br>2455.88<br>1817.86 | 4 <sup>+</sup><br>3 <sup>-</sup><br>2 <sup>+</sup> |                    |                             |                         |                                                                                                                                                                                                                                                                                                                        |

S

|                        |                                     |                                                                                                             |                                                            |                                                     | Adopt                                                                                                       | ted Levels,              | Gammas (            | continued)            |                                                                                                                                                                                                                                                                                                                 |
|------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------|---------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                                     |                                                                                                             |                                                            |                                                     |                                                                                                             | $\gamma(^{88}\text{Zr})$ | (continued          | )                     |                                                                                                                                                                                                                                                                                                                 |
| E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$                  | ${\rm E_{\gamma}}^{\dagger}$                                                                                | $I_{\gamma}^{\dagger}$                                     | $\mathbf{E}_{f}$                                    | $\mathrm{J}_f^\pi$                                                                                          | Mult. <sup>‡</sup>       | $\delta^{\ddagger}$ | α                     | Comments                                                                                                                                                                                                                                                                                                        |
| 3032.77                | 3-                                  | 576.7 2<br>892.8 5<br>1975.7 1                                                                              | 18.5 8<br>9.9 <i>10</i><br>100 <i>3</i>                    | 2455.88<br>2139.59<br>1057.03                       | 3 <sup>-</sup><br>4 <sup>+</sup><br>2 <sup>+</sup>                                                          |                          |                     |                       |                                                                                                                                                                                                                                                                                                                 |
| 3213.70                | (6+)                                | 402.9 <sup>@</sup><br>1074.1 <i>1</i>                                                                       | 34 <i>11</i><br>100 <i>15</i>                              | 2810.80<br>2139.59                                  | 6+<br>4+                                                                                                    |                          |                     |                       |                                                                                                                                                                                                                                                                                                                 |
| 3223.8<br>3277.01      | (3 <sup>-</sup> ,4,5 <sup>-</sup> ) | 684.8 <i>4</i><br>244.2 <i>2</i><br>287.3 <i>2</i><br>476.0 <i>3</i>                                        | 100<br>12.1 <i>11</i><br>25.3 <i>16</i><br>15.3 <i>21</i>  | 2539.00<br>3032.77<br>2989.67<br>2801.13            | 5-<br>3-<br>5-<br>5-                                                                                        |                          |                     |                       |                                                                                                                                                                                                                                                                                                                 |
|                        |                                     | 671.9 <sup>@</sup><br>738.0 <sup>a</sup> 1<br>821.2 1                                                       | 100 <i>16</i><br><59 <sup><i>a</i></sup><br>57.4 <i>26</i> | 2605.20<br>2539.00<br>2455.88                       | 4+<br>5-<br>3-                                                                                              |                          |                     |                       |                                                                                                                                                                                                                                                                                                                 |
| 3374.37                | (3 <sup>-</sup> ,4,5 <sup>-</sup> ) | 97.4 <sup>@</sup> 10<br>384.6 <sup>a</sup> 3<br>573.20 <sup>a</sup> 10<br>835.5 <sup>a</sup> 5<br>918 50 10 | 2.5 9<br>$<4.9^{a}$<br>$<52^{a}$<br>$<3.3^{a}$<br>100 6    | 3277.01<br>2989.67<br>2801.13<br>2539.00<br>2455.88 | (3 <sup>-</sup> ,4,5 <sup>-</sup> )<br>5 <sup>-</sup><br>5 <sup>-</sup><br>5 <sup>-</sup><br>3 <sup>-</sup> |                          |                     |                       |                                                                                                                                                                                                                                                                                                                 |
| 3390.70                | 8+                                  | 177.0 <sup>@</sup><br>502.91 <i>3</i>                                                                       | 0.10 <i>10</i><br>100.0 <i>10</i>                          | 3213.70<br>2887.79                                  | (6 <sup>+</sup> )<br>8 <sup>+</sup>                                                                         | M1+E2                    | -0.15 7             | 0.00317               | $\alpha(K)=0.00280\ 5;\ \alpha(L)=0.000312\ 6;\ \alpha(M)=5.41\times10^{-5}$<br>9; $\alpha(N)=7.69\times10^{-6}\ 13;\ \alpha(O)=5.44\times10^{-7}\ 9$<br>B(E2)(W.u.)=0.8 8; B(M1)(W.u.)=0.0080\ 5<br>$\delta$ : Other: -0.06.9 from $\alpha(\theta)$ in <sup>86</sup> Sr( $\alpha$ 2ng)                         |
| 3426.47                |                                     | 625.3 2<br>1286.9 <i>3</i>                                                                                  | 100 <i>4</i><br>43 <i>4</i>                                | 2801.13<br>2139.59                                  | 5-<br>4 <sup>+</sup>                                                                                        |                          |                     |                       | 0. Other. 0.00 9 from y(0) in Or(0,217).                                                                                                                                                                                                                                                                        |
| 3483.63                | (7-)                                | 672.8 <sup>@</sup><br>944.51 <i>24</i>                                                                      | 70 <i>30</i><br>100 8                                      | 2810.80<br>2539.00                                  | 6+<br>5 <sup>-</sup>                                                                                        |                          |                     |                       |                                                                                                                                                                                                                                                                                                                 |
| 3568.18                | (3,4 <sup>+</sup> )                 | 1112.30 <i>20</i><br>2511.10 <i>20</i>                                                                      | 85 6<br>100 6                                              | 2455.88<br>1057.03                                  | 3 <sup>-</sup><br>2 <sup>+</sup>                                                                            |                          |                     |                       |                                                                                                                                                                                                                                                                                                                 |
| 3617.44                | (7-)                                | 806.6 <i>3</i>                                                                                              | 86 17                                                      | 2810.80                                             | 6+                                                                                                          | (E1)                     |                     | 4.42×10 <sup>-4</sup> | $\alpha$ (K)=0.000391 6; $\alpha$ (L)=4.26×10 <sup>-5</sup> 6;<br>$\alpha$ (M)=7.38×10 <sup>-6</sup> 11; $\alpha$ (N)=1.048×10 <sup>-6</sup> 15;<br>$\alpha$ (O)=7.40×10 <sup>-8</sup> 11<br>Mult.: D from $\gamma(\theta)$ in <sup>89</sup> Y( $\alpha$ ,p4n $\gamma$ ), $\Delta\pi$ =yes from<br>level scheme |
| 3637.76                | (3,4+)                              | 816.7 7<br>604.8 2<br>1497.8 <i>10</i><br>2580.0 2                                                          | 100 <i>14</i><br>33 <i>4</i><br>12 <i>4</i>                | 2801.13<br>3032.77<br>2139.59                       | 5 <sup>-</sup><br>3 <sup>-</sup><br>4 <sup>+</sup><br>2 <sup>+</sup>                                        |                          |                     |                       | level scheme.                                                                                                                                                                                                                                                                                                   |
| 3875.04                | (3 <sup>-</sup> ,4,5 <sup>-</sup> ) | 598.1 <i>3</i><br>885.0 <sup>b</sup> 5<br>1336.0 2<br>1419.2 2                                              | 61 <i>4</i><br>16 <i>5</i><br>96 <i>8</i><br>100 <i>5</i>  | 3277.01<br>2989.67<br>2539.00<br>2455.88            | 2<br>(3 <sup>-</sup> ,4,5 <sup>-</sup> )<br>5 <sup>-</sup><br>5 <sup>-</sup><br>3 <sup>-</sup>              |                          |                     |                       |                                                                                                                                                                                                                                                                                                                 |
|                        |                                     |                                                                                                             |                                                            |                                                     |                                                                                                             |                          |                     |                       |                                                                                                                                                                                                                                                                                                                 |

From ENSDF

 $^{88}_{40}{
m Zr}_{48}$ -6

L

 $^{88}_{40}{
m Zr}_{48}$ -6

# $\gamma(^{88}$ Zr) (continued)

| E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$                  | $E_{\gamma}^{\dagger}$        | $I_{\gamma}^{\dagger}$ | $\mathbf{E}_{f}$ | $\mathbf{J}_f^{\pi}$ |
|------------------------|-------------------------------------|-------------------------------|------------------------|------------------|----------------------|
| 3938.28                | (3,4,5)                             | 564.1 4                       | 7.1 13                 | 3374.37          | $(3^{-},4,5^{-})$    |
|                        |                                     | 1137.3 <mark>b</mark> 10      | 94                     | 2801.13          | 5-                   |
|                        |                                     | 1399.4 2                      | 100 13                 | 2539.00          | 5-                   |
|                        |                                     | 1482.2 <sup>b</sup> 2         | 17.1 17                | 2455.88          | 3-                   |
| 3947.58                | (3,4,5)                             | 573.20 <sup>a</sup> 10        | а                      | 3374.37          | $(3^{-},4,5^{-})$    |
|                        |                                     | 949.4 <mark>b</mark> 5        |                        | 2998.4           |                      |
|                        |                                     | 1342.4 <mark>b</mark> 20      |                        | 2605.20          | 4+                   |
| 3968.2                 | (3 <sup>-</sup> ,4,5)               | 1167.0 5                      | 39 6                   | 2801.13          | 5-                   |
|                        |                                     | 1429.2 <i>3</i>               | 100 11                 | 2539.00          | 5-                   |
| 4024.9                 | (3 <sup>-</sup> ,4,5)               | 1223.8 <i>3</i>               | 100                    | 2801.13          | 5-                   |
| 4059.22                | (3 <sup>-</sup> ,4,5 <sup>-</sup> ) | 1026.3 2                      | 44 4                   | 3032.77          | 3-                   |
|                        |                                     | 1069.7 5                      | 58 <i>23</i>           | 2989.67          | 5-                   |
|                        |                                     | 1520.2 2                      | 100 5                  | 2539.00          | 5-                   |
| 1001.00                | (2= 4.5)                            | 1603.6 3                      | 41 4                   | 2455.88          | 3-                   |
| 4084.22                | (3,4,5)                             | 657.65                        | 43 4                   | 3426.47          | (2 - 45 - )          |
|                        |                                     | 1004.6.2                      | 20.0 29                | 2080.67          | (3,4,5)              |
|                        |                                     | 1094.0 2                      | 26.4                   | 2989.07          | 5<br>5-              |
|                        |                                     | 1205.5 5                      | 20 <i>4</i><br>95.6    | 2601.15          | 5<br>4 <sup>+</sup>  |
|                        |                                     | 1 = 15.02                     | 26.5                   | 2520.00          |                      |
|                        |                                     | 1943.2                        | 50 J<br>14 5           | 2339.00          | 3<br>4+              |
| 4112 20                | (2, 4, 5)                           | 728.00 10                     | 14.5                   | 2137.37          | (2 - 45 - )          |
| 4112.38                | (3,4,3)                             | $758.00^{-1}$ 10              |                        | 2277.01          | (3, 4, 3)            |
| 4155 5                 | (345)                               | 781 1 4                       | 100                    | 3374 37          | $(3^{-},4,5^{-})$    |
| 4206.1                 | (3, 1, 5)                           | $1173.5^{b}.5$                | 32.8                   | 3032 77          | 3-                   |
| 4200.1                 | (3,4,5)                             | $1522.2^{b}$ 10               | 20 8                   | 2672.7           | 5                    |
|                        |                                     | 1332.2 10                     | 100.9                  | 2075.7           | 3-                   |
| 1200 17                | (2 - 45 - )                         | 791.7@h                       | 100 >                  | 2435.00          | 5                    |
| 4206.17                | (3,4,5)                             | 931 2 1                       | 73 4                   | 3277.01          | $(3^{-} 4 5^{-})$    |
|                        |                                     | $1200 0^{b} 10$               | 53                     | 2008 /           | (5,7,5)              |
|                        |                                     | $1209.0 \ 10$<br>$1218.2 \ 1$ | 23 1                   | 2990.4           | 5-                   |
|                        |                                     | 1406 8 2                      | 72 3                   | 2909.07          | 5-                   |
|                        |                                     | 1752.4.2                      | 100.5                  | 2455.88          | 3-                   |
| 4237.0                 | $(7.8^{+})$                         | 1349.1.5                      | 100 78                 | 2887.79          | 8+                   |
| 120710                 | (,,,,,,)                            | 1426.3 6                      | 85 27                  | 2810.80          | 6 <sup>+</sup>       |
| 4307.9                 | $(3^{-}, 4, 5^{-})$                 | 1318.6 <mark>b</mark> 5       |                        | 2989.67          | 5-                   |
|                        |                                     | 1506.8 <sup>@</sup>           |                        | 2801.13          | 5-                   |
|                        |                                     | 1851.9 <mark>b</mark> 3       |                        | 2455.88          | 3-                   |
| 4335.6                 | $(3,4^{+})$                         | 3278.5 4                      | 100                    | 1057.03          | 2+                   |
| 4348.3                 |                                     | 957.6 4                       | 100                    | 3390.70          | 8+                   |

|                        |                                          |                                                         |                                                               |                                          |                                                       | Adopted Le         | vels, Gammas                | (continued)           |                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------|------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------|------------------------------------------|-------------------------------------------------------|--------------------|-----------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                                          |                                                         |                                                               |                                          |                                                       | <u>γ(</u>          | <sup>88</sup> Zr) (continue | ed)                   |                                                                                                                                                                                                                                                                                                                                                                                                   |
| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$                     | $E_{\gamma}^{\dagger}$                                  | $I_{\gamma}^{\dagger}$                                        | $E_f$                                    | $\mathbf{J}_{f}^{\pi}$                                | Mult. <sup>‡</sup> | $\delta^{\ddagger}$         | α                     | Comments                                                                                                                                                                                                                                                                                                                                                                                          |
| 4348.3<br>4388.34      | (7,8 <sup>+</sup> )                      | 1134.6 <sup>@</sup><br>997.6 <i>3</i><br>1174 7 5       | 93 <i>14</i><br>100 <i>11</i>                                 | 3213.70<br>3390.70<br>3213.70            | $(6^+)$<br>$8^+$<br>$(6^+)$                           |                    |                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4413.07                | 10+                                      | 1022.3 2                                                | 100 3                                                         | 3390.70                                  | 8 <sup>+</sup>                                        | E2                 |                             | 6.38×10 <sup>-4</sup> | $\begin{aligned} &\alpha(\mathbf{K}) = 0.000563 \ 8; \ \alpha(\mathbf{L}) = 6.25 \times 10^{-5} \ 9; \\ &\alpha(\mathbf{M}) = 1.083 \times 10^{-5} \ 16; \ \alpha(\mathbf{N}) = 1.536 \times 10^{-6} \ 22 \\ &\alpha(\mathbf{O}) = 1.073 \times 10^{-7} \ 15 \\ &\mathbf{B}(\mathbf{E2})(\mathbf{W}.\mathbf{u}.) > 15 \end{aligned}$                                                              |
|                        |                                          | 1525.14 <sup>b</sup> 20                                 | 1.80 25                                                       | 2887.79                                  | 8+                                                    | (E2)               |                             | 3.66×10 <sup>-4</sup> | $\alpha$ (K)=0.000241 4; $\alpha$ (L)=2.63×10 <sup>-5</sup> 4; $\alpha$ (M)=4.56×10 <sup>-6</sup><br>7; $\alpha$ (N)=6.48×10 <sup>-7</sup> 9; $\alpha$ (O)=4.60×10 <sup>-8</sup> 7<br>B(E2)(W.u.)>0.037                                                                                                                                                                                           |
| 4461.88                | (7,8+)                                   | 1071.2 <sup>@</sup><br>1247.8 5<br>1573.9 3<br>1651 6 4 | 87 <i>33</i><br>44 <i>13</i><br>100 <i>13</i><br>91 <i>13</i> | 3390.70<br>3213.70<br>2887.79<br>2810.80 | $8^+$<br>(6 <sup>+</sup> )<br>$8^+$<br>6 <sup>+</sup> |                    |                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4486.31                | (9 <sup>-</sup> )                        | 1002.67 7                                               | 100 4                                                         | 3483.63                                  | (7 <sup>-</sup> )                                     | (E2)               |                             | 6.67×10 <sup>-4</sup> | $\alpha(K)=0.000588 \ 9; \ \alpha(L)=6.54\times10^{-5} \ 10;$<br>$\alpha(M)=1.134\times10^{-5} \ 16; \ \alpha(N)=1.607\times10^{-6} \ 23$<br>$\alpha(O)=1.121\times10^{-7} \ 16$                                                                                                                                                                                                                  |
|                        |                                          | 1095.61 12                                              | 67 <i>3</i>                                                   | 3390.70                                  | 8+                                                    | (E1)               |                             | 2.43×10 <sup>-4</sup> | $\alpha(K) = 0.000215 \ 3; \ \alpha(L) = 2.33 \times 10^{-5} \ 4; \ \alpha(M) = 4.03 \times 10^{-6} \ 6; \ \alpha(N) = 5.73 \times 10^{-7} \ 8; \ \alpha(O) = 4.07 \times 10^{-8} \ 6 \ I_{\nu}; \ from \ ^{74}Ge(^{18}O,4n\gamma).$                                                                                                                                                              |
| 4612.29                | 9+                                       | 199.19 <sup>b</sup> 10                                  | 1.9 5                                                         | 4413.07                                  | 10+                                                   | M1(+E2)            | -0.2 +3-9                   | 0.03 3                | $\alpha$ (K)=0.03 <i>3</i> ; $\alpha$ (L)=0.003 <i>4</i> ; $\alpha$ (M)=0.0006 <i>7</i> ;<br>$\alpha$ (N)=8.E-5 <i>9</i> ; $\alpha$ (O)=6.E-6 <i>5</i><br>B(M1)(W.u.)>0.00025                                                                                                                                                                                                                     |
|                        |                                          | 1221.70 <i>14</i>                                       | 100 3                                                         | 3390.70                                  | 8+                                                    | (M1+E2)            | -0.25 7                     | 4.50×10 <sup>-4</sup> | $\alpha(K)=0.000390 \ 6; \ \alpha(L)=4.26\times10^{-5} \ 6; \ \alpha(M)=7.38\times10^{-6} \ 11; \ \alpha(N)=1.050\times10^{-6} \ 15; \ \alpha(O)=7.52\times10^{-8} \ 11 \ B(E2)(W.u.)>0.0014; \ B(M1)(W.u.)>6.1\times10^{-5} \ \delta: \ from \ \gamma(\theta) \ ^{86}Sr(\alpha,2n\gamma). \ Others: \ -0.7 \ 3 \ from \ ^{74}Ge(^{18}O.4n\gamma), \ -0.3 \ 2 \ from \ ^{89}Y(\alpha,p4n\gamma).$ |
|                        |                                          | 1724.49 <sup>b</sup> 20                                 | 4.1 9                                                         | 2887.79                                  | 8+                                                    | M1(+E2)            | +0.05 8                     | 3.73×10 <sup>-4</sup> | $\alpha(K)=0.000195 \ 3; \ \alpha(L)=2.12\times10^{-5} \ 3; \ \alpha(M)=3.68\times10^{-6} \ 6; \ \alpha(N)=5.24\times10^{-7} \ 8; \ \alpha(O)=3.76\times10^{-8} \ 6 \ B(M1)(W,u_{*})>9.7\times10^{-7}$                                                                                                                                                                                            |
| 4672.7<br>4713.08      | (3 <sup>-</sup> ,4,5)<br>10 <sup>-</sup> | 1871.5 <i>3</i><br>100.79 <i>2</i>                      | 100<br>100.0 <i>24</i>                                        | 2801.13<br>4612.29                       | 5 <sup>-</sup><br>9 <sup>+</sup>                      | E1                 |                             | 0.1110                | $\alpha(K)=0.0978 \ 14; \ \alpha(L)=0.01106 \ 16; \ \alpha(M)=0.00191 \ 3; \\ \alpha(N)=0.000265 \ 4; \ \alpha(O)=1.682\times10^{-5} \ 24 \\ B(E1)(W.u.)=0.000102 \ 9 \\ St \ S(M2/E1) = 0.024 \ 4$                                                                                                                                                                                               |
|                        |                                          | 226.62 28                                               | 24.6 23                                                       | 4486.31                                  | (9 <sup>-</sup> )                                     | (M1+E2)            | -0.05 3                     | 0.0226                | α(K)=0.0199 3; α(L)=0.00227 4; α(M)=0.000395 7;<br>α(N)=5.59×10 <sup>-5</sup> 9; α(O)=3.90×10 <sup>-6</sup> 6<br>B(E2)(W.u.)=0.008 +10−8; B(M1)(W.u.)=0.000142 18<br>δ: weighted average of −0.09 5 from <sup>74</sup> Ge( <sup>18</sup> O,4nγ)<br>and −0.03 3 from <sup>89</sup> Y(α,p4nγ).                                                                                                      |

 $\infty$ 

L

|                        |                               |                        |                        |         | A                    | Adopted Lev        | els, Gamm           | as (continued)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------|-------------------------------|------------------------|------------------------|---------|----------------------|--------------------|---------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                               |                        |                        |         |                      | $\gamma(^{88}$     | Zr) (contin         | ued)                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$            | $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger}$ | $E_f$   | $\mathbf{J}_f^{\pi}$ | Mult. <sup>‡</sup> | $\delta^{\ddagger}$ | α                     | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4713.08                | 10-                           | 299.90 13              | 9.4 8                  | 4413.07 | 10+                  | E1                 |                     | 0.00486               | $ \frac{\alpha(K)=0.00429 \ 6; \ \alpha(L)=0.000475 \ 7;}{\alpha(M)=8.21\times10^{-5} \ 12; \ \alpha(N)=1.159\times10^{-5} \ 17;} \\ \alpha(O)=7.92\times10^{-7} \ 12 \\ B(E1)(W.u.)=3.6\times10^{-7} \ 5 \\ \delta: \ \delta(M2/E1)=\pm0.2 \ 5 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4797.63                | 11-                           | 84.55 2                | 100.0 23               | 4713.08 | 10-                  | M1(+E2)            | -0.02 6             | 0.325 12              | $\alpha(K) = 0.285 \ 9; \ \alpha(L) = 0.0333 \ 19; \ \alpha(M) = 0.0058 \ 4; \alpha(N) = 0.00082 \ 5; \ \alpha(O) = 5.62 \times 10^{-5} \ 15 B(M1)(W.u.) = 0.48 \ 5 Model Coll (12) = 0.48 \ 5 \ 10^{-5} \ 15 \ 10^{-5} \ 15 \ 10^{-5} \ 15 \ 10^{-5} \ 15 \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-$              |
|                        |                               | 384.56 10              | 18.1 <i>10</i>         | 4413.07 | 10+                  | E1                 |                     | 0.00251               | Mult.: Other: (E1) proposed in $O^{-1}Y(\alpha,p4n\gamma)$ .<br>$\alpha(K)=0.00221 \ 4; \ \alpha(L)=0.000244 \ 4;$<br>$\alpha(M)=4.22\times10^{-5} \ 6; \ \alpha(N)=5.97\times10^{-6} \ 9;$<br>$\alpha(O)=4.13\times10^{-7} \ 6$<br>B(E1)(W.u.)=1.44×10^{-5} \ 15<br>$\delta: \ \delta(M2/E1)=-0.03 \ 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4934.5                 | (7,8 <sup>+</sup> )           | 546.1 5                | 29 7                   | 4388.34 | (7,8 <sup>+</sup> )  | (E2)               |                     | 0.00323               | $\alpha(K)=0.00284 \ 4; \ \alpha(L)=0.000328 \ 5; \\ \alpha(M)=5.70\times10^{-5} \ 9; \ \alpha(N)=8.00\times10^{-6} \ 12; \\ \alpha(O)=5.33\times10^{-7} \ 8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                        |                               | 586.1 5                |                        | 4348.3  |                      |                    |                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                        |                               | 1543.8                 | 100 12                 | 3390.70 | 8+                   |                    |                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5087.0                 | $(7.8^{+})$                   | 1720.8 4               | 84 <i>10</i>           | 3213.70 | $(6^{+})$            |                    |                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5166 22                | (7,0)                         | 2277.13                | 100                    | 4707.62 | 11-                  |                    |                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5229.47                | (10,11,12)<br>12 <sup>+</sup> | 816.40 7               | 100.0 25               | 4413.07 | 10 <sup>+</sup>      | E2                 |                     | 1.09×10 <sup>-3</sup> | $\alpha$ (K)=0.000962 <i>14</i> ; $\alpha$ (L)=0.0001081 <i>16</i> ;<br>$\alpha$ (M)=1.87×10 <sup>-5</sup> <i>3</i> ; $\alpha$ (N)=2.65×10 <sup>-6</sup> <i>4</i> ;<br>$\alpha$ (O)=1.83×10 <sup>-7</sup> <i>3</i><br>B(E2)(Wu)=6.7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5583.85                | 12-                           | 786.11 7               | 100.0 9                | 4797.63 | 11-                  | M1(+E2)            | 0.00 4              | 1.14×10 <sup>-3</sup> | $\alpha(K)=0.001003 \ 14; \ \alpha(L)=0.0001104 \ 16; \alpha(M)=1.92\times10^{-5} \ 3; \ \alpha(N)=2.73\times10^{-6} \ 4; \alpha(O)=1.94\times10^{-7} \ 3 B(M1)(W.u.)>0.065 0.001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \ 1001103 \$ |
| 5665.91                | 12+                           | 436.49 7               | 100                    | 5229.47 | 12+                  | M1(+E2)            | <0.16               | 0.00443               | δ: Other: $-0.3$ <i>I</i> from $\gamma(\theta)$ in <sup>69</sup> Y(α,p4nγ).<br>$\alpha(K)=0.00391$ 6; $\alpha(L)=0.000437$ 7;<br>$\alpha(M)=7.59\times10^{-5}$ <i>12</i> ; $\alpha(N)=1.078\times10^{-5}$ <i>17</i> ;<br>$\alpha(O)=7.61\times10^{-7}$ <i>12</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5787 2                 | (7, 8, 0)                     | 2306 5 5               | 100                    | 3300 70 | Q+                   |                    |                     |                       | $B(E2)(W.u.) < 1.9 \times 10^{2}; B(M1)(W.u.) > 0.59$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5950.75                | (13) <sup>+</sup>             | 285.19 20              | 3.8 4                  | 5665.91 | 0<br>12 <sup>+</sup> | M1(+E2)            | <0.14               | 0.01267 22            | $\alpha$ (K)=0.01116 20; $\alpha$ (L)=0.001264 24;<br>$\alpha$ (M)=0.000220 4; $\alpha$ (N)=3.12×10 <sup>-5</sup> 6;<br>$\alpha$ (O)=2.18×10 <sup>-6</sup> 4<br>B(M1)(W µ)>0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                        |                               | 366.5 <sup>b</sup> 4   | 18 10                  | 5583.85 | 12-                  |                    |                     |                       | <i>L</i> ( <i>m</i> )( <i>m</i> , <i>n</i> )/0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                        |                               | 50015 1                | 10 10                  | 2202.02 |                      |                    |                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                        |                               |                        |                        |         |                      |                    |                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

## Adopted Levels, Gammas (continued)

# $\gamma(^{88}$ Zr) (continued)

| E <sub>i</sub> (level)                  | $\mathbf{J}_i^{\pi}$             | $E_{\gamma}^{\dagger}$                                                   | $I_{\gamma}^{\dagger}$              | $E_f$                                    | $\mathbf{J}_f^{\pi}$                       | Mult. <sup>‡</sup>             | $\delta^{\ddagger}$                      | α                             | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------|----------------------------------|--------------------------------------------------------------------------|-------------------------------------|------------------------------------------|--------------------------------------------|--------------------------------|------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5950.75                                 | (13)+                            | 721.21 14                                                                | 100.0 29                            | 5229.47                                  | 12+                                        | (M1+E2)                        | -0.10 6                                  | 1.38×10 <sup>-3</sup>         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6000.8?                                 | (13)-                            | 417.0 <sup>b</sup> 3                                                     | 100                                 | 5583.85                                  | 12-                                        | M1(+E2)                        | -0.07 12                                 | 0.00493 10                    | $\alpha(K)=0.00435 \ 9; \ \alpha(L)=0.000487 \ 11; \\ \alpha(M)=8.45\times10^{-5} \ 19; \ \alpha(N)=1.20\times10^{-5} \ 3; \\ \alpha(O)=8.47\times10^{-7} \ 16 \\ B(M1)(W.u.)>0.42$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6032.52?                                | (12 <sup>-</sup> )               | 1234.92 <sup>b</sup> 15                                                  | 100                                 | 4797.63                                  | 11-                                        | M1(+E2)                        | <0.09                                    | 4.42×10 <sup>-4</sup>         | $\alpha$ (K)=0.000382 6; $\alpha$ (L)=4.17×10 <sup>-5</sup> 6;<br>$\alpha$ (M)=7.22×10 <sup>-6</sup> 11; $\alpha$ (N)=1.028×10 <sup>-6</sup> 15;<br>$\alpha$ (O)=7.37×10 <sup>-8</sup> 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6192.94                                 | 13-                              | 160.42 3                                                                 | 15.5 <i>15</i>                      | 6032.52?                                 | (12 <sup>-</sup> )                         | M1(+E2)                        | -0.08 8                                  | 0.057 3                       | $\alpha(K)=0.0499\ 24;\ \alpha(L)=0.0058\ 4;\ \alpha(M)=0.00100\ 7;\ \alpha(N)=0.000142\ 9;\ \alpha(O)=9.8\times10^{-6}\ 4$<br>B(E2)(W.u.)=8.E+1 +16-8; B(M1)(W.u.)=0.28\ 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                         |                                  | 608.90 <i>10</i>                                                         | 54.5 30                             | 5583.85                                  | 12-                                        | M1(+E2)                        | -0.05 14                                 | 0.00202                       | $\alpha$ (K)=0.00178 3; $\alpha$ (L)=0.000198 3; $\alpha$ (M)=3.43×10 <sup>-5</sup><br>6; $\alpha$ (N)=4.88×10 <sup>-6</sup> 8; $\alpha$ (O)=3.46×10 <sup>-7</sup> 5<br>B(E2)(W.u.)=0.14 +76-14; B(M1)(W.u.)=0.0182 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                         |                                  | 1395.39 7                                                                | 100 5                               | 4797.63                                  | 11-                                        | E2                             |                                          | 3.76×10 <sup>-4</sup>         | $\alpha(K)=0.000288 \ 4; \ \alpha(L)=3.16\times10^{-5} \ 5; \\ \alpha(M)=5.47\times10^{-6} \ 8; \ \alpha(N)=7.77\times10^{-7} \ 11; \\ \alpha(O)=5.50\times10^{-8} \ 8 \\ B(E2)(Wu)=1.58 \ 17$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 6238.79                                 | (14)+                            | 288.05 4                                                                 | 100.0 9                             | 5950.75                                  | (13)+                                      | (M1+E2)                        | -0.10 5                                  | 0.01236 24                    | $\begin{aligned} \alpha(\mathbf{K}) = 0.01088 \ 21; \ \alpha(\mathbf{L}) = 0.001233 \ 25; \\ \alpha(\mathbf{M}) = 0.000214 \ 5; \ \alpha(\mathbf{N}) = 3.04 \times 10^{-5} \ 6; \\ \alpha(\mathbf{O}) = 2.13 \times 10^{-6} \ 4 \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         |                                  |                                                                          |                                     |                                          |                                            |                                |                                          |                               | B(E2)(W.u.)=1.0×10 <sup>2</sup> +11-10; B(M1)(W.u.)=0.74 23<br>δ: from $\gamma(\theta)$ in <sup>89</sup> Y(α,p4nγ). Other: <0.11 in <sup>74</sup> Ge( <sup>18</sup> O,4nγ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                         |                                  | 1009.25 15                                                               | 21.7 11                             | 5229.47                                  | 12+                                        | (E2)                           |                                          | 6.57×10 <sup>-4</sup>         | $\alpha(K)=0.000580 \ 9; \ \alpha(L)=6.44\times10^{-5} \ 9; \alpha(M)=1.116\times10^{-5} \ 16; \ \alpha(N)=1.582\times10^{-6} \ 23 \alpha(O)=1.105\times10^{-7} \ 16 B(F2)(Wn)=4.1 \ 13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 6501.32                                 | (14)+                            | 550.6 <i>3</i>                                                           | 100                                 | 5950.75                                  | (13)+                                      | M1(+E2)                        | 0.00 5                                   | 0.00255                       | $\alpha(K)=0.00225 \ 4; \ \alpha(L)=0.000250 \ 4; \ \alpha(M)=4.33\times10^{-5} \ 7; \ \alpha(N)=6.16\times10^{-6} \ 9; \ \alpha(O)=4.37\times10^{-7} \ 7 \ B(M1)(W.u.)=0.82 \ 16$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6578.2<br>6765.33                       | (14) <sup>-</sup>                | 627.5 <i>5</i><br>572.39 20                                              | 100<br>100                          | 5950.75<br>6192.94                       | (13) <sup>+</sup><br>13 <sup>-</sup>       | (M1+E2)                        | -0.16 7                                  | 0.00234                       | $\alpha(K)=0.00207 \ 3; \ \alpha(L)=0.000229 \ 4; \ \alpha(M)=3.98\times10^{-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6826.66                                 | $(15)^{+}$                       | 325 34 10                                                                | 33 4 14                             | 6501 32                                  | $(14)^{+}$                                 | M1(+E2)                        | <0.09                                    | 0 00906                       | 7; $\alpha(N)=5.66\times10^{-6}$ 9; $\alpha(O)=4.01\times10^{-7}$ 6<br>B(E2)(W.u.)>3.0; B(M1)(W.u.)>0.23<br>$\alpha(K)=0.00798$ 12: $\alpha(L)=0.000899$ 13:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 6501.32<br>6578.2<br>6765.33<br>6826.66 | $(14)^+$<br>$(14)^-$<br>$(15)^+$ | 550.6 <i>3</i><br>627.5 <i>5</i><br>572.39 <i>20</i><br>325.34 <i>10</i> | 100<br>100<br>100<br>33.4 <i>14</i> | 5950.75<br>5950.75<br>6192.94<br>6501.32 | $(13)^+$<br>$(13)^+$<br>$13^-$<br>$(14)^+$ | (M1(+E2)<br>(M1+E2)<br>M1(+E2) | 0.00 <i>5</i><br>-0.16 <i>7</i><br><0.09 | 0.00255<br>0.00234<br>0.00906 | $\begin{aligned} \alpha(M) = 0.005007, \ \alpha(L) = 0.00071077, \\ \alpha(M) = 1.116 \times 10^{-5} \ 16; \ \alpha(N) = 1.582 \times 10^{-6} \ 23 \\ \alpha(O) = 1.105 \times 10^{-7} \ 16 \\ B(E2)(W.u.) = 4.1 \ 13 \\ \alpha(K) = 0.00225 \ 4; \ \alpha(L) = 0.000250 \ 4; \ \alpha(M) = 4.33 \times 10^{-5} \\ 7; \ \alpha(N) = 6.16 \times 10^{-6} \ 9; \ \alpha(O) = 4.37 \times 10^{-7} \ 7 \\ B(M1)(W.u.) = 0.82 \ 16 \\ \end{aligned}$ $\begin{aligned} \alpha(K) = 0.00207 \ 3; \ \alpha(L) = 0.000229 \ 4; \ \alpha(M) = 3.98 \times 10^{-5} \\ 7; \ \alpha(N) = 5.66 \times 10^{-6} \ 9; \ \alpha(O) = 4.01 \times 10^{-7} \ 6 \\ B(E2)(W.u.) > 3.0; \ B(M1)(W.u.) > 0.23 \\ \alpha(K) = 0.00798 \ 12; \ \alpha(L) = 0.000899 \ 13; \end{aligned}$ |

10

From ENSDF

|                        |                      |                              |                        |         |                      | Adopted            | l Levels, Gammas                      | (continued)             |                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------|----------------------|------------------------------|------------------------|---------|----------------------|--------------------|---------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                      |                              |                        |         |                      |                    | $\gamma$ <sup>(88</sup> Zr) (continue | ed)                     |                                                                                                                                                                                                                                                                                                                                                                                  |
| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | ${\rm E_{\gamma}}^{\dagger}$ | $I_{\gamma}^{\dagger}$ | $E_f$   | $\mathbf{J}_f^{\pi}$ | Mult. <sup>‡</sup> | $\delta^{\ddagger}$                   | α                       | Comments                                                                                                                                                                                                                                                                                                                                                                         |
| 6826.66                | (15)+                | 587.85 20                    | 100 6                  | 6238.79 | (14)+                | M1(+E2)            | <0.22                                 | 0.00220 4               | $\begin{aligned} \alpha(M) = 0.0001562 \ 23; \ \alpha(N) = 2.22 \times 10^{-5} \ 4 \\ \alpha(O) = 1.558 \times 10^{-6} \ 23 \\ B(E2)(W.u.) < 1.6 \times 10^{2}; \ B(M1)(W.u.) > 1.3 \\ \alpha(K) = 0.00194 \ 3; \ \alpha(L) = 0.000215 \ 4; \\ \alpha(M) = 3.74 \times 10^{-5} \ 6; \ \alpha(N) = 5.31 \times 10^{-6} \ 8; \\ \alpha(O) = 3.77 \times 10^{-7} \ 6 \end{aligned}$ |
| 7228.2                 | (15)-                | 462.87 20                    | 100                    | 6765.33 | (14)-                | M1(+E2)            | +0.01 5                               | 0.00383                 | B(E2)(W.u.)<1.5×10 <sup>2</sup> ; B(M1)(W.u.)>0.61<br>$\alpha$ (K)=0.00338 5; $\alpha$ (L)=0.000377 6;<br>$\alpha$ (M)=6.55×10 <sup>-5</sup> 10; $\alpha$ (N)=9.30×10 <sup>-6</sup> 14;<br>$\alpha$ (O)=6.58×10 <sup>-7</sup> 10<br>B(M1)(W.u.)>0.28                                                                                                                             |
| 7431.9                 |                      | 605.2 3                      | 100                    | 6826.66 | $(15)^{+}$           | D(+O)              | < 0.21                                |                         |                                                                                                                                                                                                                                                                                                                                                                                  |
| 7536.5                 | (15 <sup>-</sup> )   | 771.1 3                      | 100 12                 | 6765.33 | (14)-                | M1(+E2)            | 0.00 12                               | 1.19×10 <sup>-3</sup>   | $\alpha(K)=0.001047 \ 15; \ \alpha(L)=0.0001153 \ 17; \alpha(M)=2.00\times10^{-5} \ 3; \ \alpha(N)=2.85\times10^{-6} \ 4; \alpha(O)=2.03\times10^{-7} \ 3 B(M))(W u > 0 \ 15$                                                                                                                                                                                                    |
| 7878.9                 | (16 <sup>-</sup> )   | 342.2 4                      | 100 <i>19</i>          | 7536.5  | (15 <sup>-</sup> )   | M1(+E2)            | -0.05 9                               | 0.00798 16              | $\alpha(\mathbf{K})=0.00703 \ 14; \ \alpha(\mathbf{L})=0.000791 \ 17;$<br>$\alpha(\mathbf{M})=0.000137 \ 3; \ \alpha(\mathbf{N})=1.95\times10^{-5} \ 4;$<br>$\alpha(\mathbf{O})=1.373\times10^{-6} \ 25$<br>$\mathbf{B}(\mathbf{M})(\mathbf{W} \mathbf{u}) > 0.58$                                                                                                               |
|                        |                      | 650.9 4                      | 86 <i>19</i>           | 7228.2  | (15)-                | M1(+E2)            | -0.14 +20-40                          | 0.00174 6               | $\begin{aligned} \alpha(\text{K}) = 0.00154 \ 5; \ \alpha(\text{L}) = 0.000170 \ 7; \\ \alpha(\text{M}) = 2.95 \times 10^{-5} \ 11; \ \alpha(\text{N}) = 4.19 \times 10^{-6} \ 15; \\ \alpha(\text{O}) = 2.98 \times 10^{-7} \ 8 \\ \text{P(M1)(Wn)} > 0.068 \end{aligned}$                                                                                                      |
| 8200.2                 | (17 <sup>-</sup> )   | 321.30 20                    | 100                    | 7878.9  | (16 <sup>-</sup> )   | M1(+E2)            | 0.00 3                                | 0.00931 14              | $\begin{aligned} \alpha(\mathbf{K}) &= 0.00820 \ 12; \ \alpha(\mathbf{L}) &= 0.000924 \ 13; \\ \alpha(\mathbf{M}) &= 0.0001606 \ 23; \ \alpha(\mathbf{N}) &= 2.28 \times 10^{-5} \ 4 \\ \alpha(\mathbf{O}) &= 1.603 \times 10^{-6} \ 23 \\ \mathbf{O}(\mathbf{M}) &= 0.22 \ \pm 8 \ 22 \end{aligned}$                                                                            |
| 8925.2                 | (18 <sup>-</sup> )   | 724.85 20                    | 100                    | 8200.2  | (17 <sup>-</sup> )   | M1(+E2)            | -0.09 14                              | 1.36×10 <sup>-3</sup> 2 | B(M1)(W.u.)=2.2 +8-22<br>$\alpha$ (K)=0.001202 18; $\alpha$ (L)=0.0001326 20;<br>$\alpha$ (M)=2.30×10 <sup>-5</sup> 4; $\alpha$ (N)=3.27×10 <sup>-6</sup> 5;<br>$\alpha$ (O)=2.33×10 <sup>-7</sup> 4<br>P(M1)(W.u.)=0.10                                                                                                                                                         |
| 9912.6?                | (19 <sup>-</sup> )   | 987.35 <sup>b</sup> 20       | 93 17                  | 8925.2  | (18 <sup>-</sup> )   | M1(+E2)            | -0.11 16                              | 6.91×10 <sup>-4</sup>   | $\begin{array}{l} B(M1)(W.d.) > 0.19\\ \alpha(K) = 0.000611 \ 9; \ \alpha(L) = 6.70 \times 10^{-5} \ 10;\\ \alpha(M) = 1.161 \times 10^{-5} \ 17; \ \alpha(N) = 1.653 \times 10^{-6} \ 24\\ \alpha(O) = 1.181 \times 10^{-7} \ 17\\ B(E2)(Wn) > 0.83; \ B(M1)(Wn) > 0.016\\ \end{array}$                                                                                         |
|                        |                      | 1712.50 <sup>b</sup> 20      | 100 7                  | 8200.2  | (17 <sup>-</sup> )   | E2                 |                                       | 3.90×10 <sup>-4</sup>   | $\alpha(K)=0.000192 \ 3; \ \alpha(L)=2.09\times10^{-5} \ 3; \\ \alpha(M)=3.63\times10^{-6} \ 5; \ \alpha(N)=5.16\times10^{-7} \ 8; \\ \alpha(O)=3.67\times10^{-8} \ 6 \\ B(F2)(Wu) < 1.2$                                                                                                                                                                                        |
| 10557.3?               | (20)                 | 644.7 <sup>b</sup> 7         | 100                    | 9912.6? | (19 <sup>-</sup> )   | D(+Q)              | <0.25                                 |                         |                                                                                                                                                                                                                                                                                                                                                                                  |

From ENSDF

<sup>88</sup><sub>40</sub>Zr<sub>48</sub>-11

 $^{88}_{40}{
m Zr}_{48}{
m -}11$ 

L



<sup>@</sup> From level-energy difference.

<sup>&</sup> Multiply placed.

<sup>*a*</sup> Multiply placed with undivided intensity.

<sup>b</sup> Placement of transition in the level scheme is uncertain.

 $^{88}_{40}{
m Zr}_{48}$ -12



 $^{88}_{40}$ Zr<sub>48</sub>

Legend

## Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$  Decay (Uncertain)



 $^{88}_{40}{
m Zr}_{48}$ 

Legend

## Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$  Decay (Uncertain)



 $^{88}_{40}{
m Zr}_{48}$ 





## Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given



 $^{88}_{40}{
m Zr}_{48}$