⁸⁸Kr β^- decay 1976Bu05

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	E. A. Mccutchan and A. A. Sonzogni	NDS 115, 135 (2014)	1-Nov-2013						

Parent: ⁸⁸Kr: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=2.825$ h 19; $Q(\beta^-)=2918$ 3; $\%\beta^-$ decay=100.0

1976Bu05: ⁸⁸Kr activity from ²³⁵U(n,F) and subsequent mass-separation and gas-chromatographic-isolation. Measured Eγ, Iγ, and γγ using two coaxial Ge(Li) detectors (FWHM=2.5 keV), a Compton-suppressed Ge(Li) detector, and a planar Ge(Li) low-energy photon spectrometer.
1976Wo05: ⁸⁸Kr activity from ²³⁵U(n,f) and subsequent separation by the TRISTAN on-line separator. Measured absolute Iβ and

1976Wo05: ⁸⁸Kr activity from ²³⁵U(n,f) and subsequent separation by the TRISTAN on-line separator. Measured absolute I β and I γ using a Ge(Li) detector and plastic scintillator.

Shapes of β spectra measured by 1986HeZY.

Others: 1974WoZO, 1973BIZH, 1973GeZZ, 1970Ly01.

Total energy release of 2930 keV 100 is calculated using the RADLST code, in good agreement with the decay Q value of 2918 keV 3.

 α : Additional information 1.

88 Rb Levels

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
0 27.515 9 196.292 8 268.24 3 362.240 10 390.547 10	$ \frac{2^{-}}{(3)^{-}} \\ (1)^{-} \\ 4^{-} \\ (2)^{-} \\ (2^{-}) $	862.349 9 1141.360 22 1182.090 17 1212.578 21 1245.24? 4 1352.494 22	$ \frac{2^{-}}{1^{-},2^{-}} \\ (0,1,2) \\ (1,2)^{-} \\ (2)^{-} \\ 1^{-},2^{-} $	1441.51 3 1603.83 3 1661.15 4 1714.714 24 1793.3? 3 1915.52 4	$(1,2^{-}) (0^{-},1^{-},2^{-}) 1^{-},2^{-} 0^{-},1^{-} 0^{-},1^{-},2^{-} (1,2)^{$	2089.07? [#] 13 2231.761 14 2392.147 9 2456.00? 16 2548.420 23 2771.11 4	$ \begin{array}{c} 1^+\\ 1^+\\ (0^-,1^-)\\ 1^+\\ 1^+ \end{array} $

 † From a least-squares fit to $E\gamma$ by evaluators.

[‡] From the Adopted Levels.

[#] Level is not adopted.

β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft	Comments
(147 3)	2771.11	0.353 25	4.85 5	av Eβ=39.79 88
(370 3)	2548.420	2.65 16	5.27 3	av E β =111.2 <i>11</i>
(462 [#] 3)	2456.00?	0.066 17	7.20 12	av Eβ=143.9 <i>11</i>
(526 3)	2392.147	67 4	4.39 <i>3</i>	av E β =167.3 <i>12</i>
(686 3)	2231.761	9.1 5	5.665 25	av E β =228.5 12
(829 [#] 3)	2089.07?	0.14 3	7.78 10	av E β =285.6 13
(1002 3)	1915.52	0.204 17	$8.48^{1u} 4$	av E β =378.4 13
(1125 [#] 3)	1793.3?	0.035 14	8.87 18	av Eβ=409.3 13
(1203 3)	1714.714	1.92 12	7.25 3	av Eβ=443.2 <i>13</i>
(1257 3)	1661.15	0.23 4	8.24 8	av E β =466.5 13
(1476 3)	1441.51	0.22 3	8.54 6	av $E\beta = 563.4 \ 14$
(1736 3)	1182.090	1.02 7	$9.12^{1u} 3$	av E β =694.1 14
(1777 3)	1141.360	0.10 6	9.2 3	av Eβ=698.8 14
(2056 3)	862.349	1.3 <i>3</i>	9.44 ¹ <i>u</i> 10	av Eβ=837.8 14
(2527 3)	390.547	0.26 10	10.68 ¹ <i>u</i> 17	av Eβ=1053.8 14
(2722 3)	196.292	2.0 3	8.67 7	av E β =1138.5 15
(2918 3)	0	14 4	9.32 ¹ <i>u</i> 13	av E β =1235.4 14

$^{88}{\rm Kr}\,\beta^{-}\,{\rm decay}$ 1976Bu05 (continued)

 β^- radiations (continued)

[†] From an intensity balance at each level.
[‡] Absolute intensity per 100 decays.
[#] Existence of this branch is questionable.

$\gamma(^{88}{\rm Rb})$

I γ normalization: from $\Sigma(I(\gamma+ce)$ to g.s.)=86 4 determined by absolute β and γ counting (1976Wo05). $\alpha(K)$ exp: from magnetic spectrometer measurement (1973HaZW), except where noted.

 $\boldsymbol{\omega}$

E_{γ}^{\dagger}	Ι _γ ‡#	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_{f}^{π}	Mult.	δ	α	$I_{(\gamma+ce)}^{\#}$	Comments
27.513 14	5.6 4	27.515	(3)-	0	2-	M1(+E2)	0.07 +3-7	6.3 5	41.4 4	α(exp)=6.4 5; ce(K)/(γ+ce)=0.74 5; ce(L)/(γ+ce)=0.106 24; ce(M)/(γ+ce)=0.018 5; ce(N)/(γ+ce)=0.0019 4 ce(O)/(γ+ce)=6.5×10-5 5 α(K)=5.4 3; α(L)=0.78 19; α(M)=0.13 3; α(N)=0.014 3; α(O)=0.000476 18 Mult.,δ: from α(exp). α,I(γ+ce): α(exp) from intensity balance since β feeding is negligible for a third forbidden transition
28.26 11	0.08 3	390.547	(2 ⁻)	362.240	(2)-	[M1]		5.42 10		$\alpha(K)=4.77$ 9; $\alpha(L)=0.551$ 10; $\alpha(M)=0.0911$ 17; $\alpha(N)=0.01022$ 19; $\alpha(O)=0.000426$ 8 Mult., α : δ probably small since a larger α would result in a large negative feeding of the 362 level.
122.27 6	0.57 2	390.547	(2 ⁻)	268.24	4-	[E2]		0.463		$\alpha(K) = 0.396 6; \alpha(L) = 0.0566 8; \alpha(M) = 0.00934 14; \alpha(N) = 0.00980 14; \alpha(Q) = 3.04 \times 10^{-5} 5$
165.98 4	8.97 40	362.240	(2)-	196.292	(1)-	M1+E2	0.74 10	0.077 8		α(K)=0.00050077 α(K)=0.0677 α(K)=0.0677 ; $ α(L)=0.00849 $; $ α(M)=0.0013814 $; $ α(N)=0.00015015 $; $ α(O)=5.5\times10^{-6}5 $ Mult.,δ: from $ α(K)$ exp. α(K)exp: from 1974WoZO (also quoted in 1976Bu05). α(K)exp: Other: 0.0293 (1973HaZW); results in a small negative feeding of the level.
168.5 2 ^x 176.71 17	$\leq 0.02 \\ 0.07 \ 2$	196.292	(1)-	27.515	(3)-					
196.301 <i>10</i>	75.1 5	196.292	(1)-	0	2-	M1+E2	0.92 15	0.050 5		α(K)exp=0.044 4; α(L)exp=0.005 1 α(K)=0.044 5; α(L)=0.0053 6; α(M)=0.00088 10; $α(N)=9.7 \times 10^{-5} 10; α(O)=3.6 \times 10^{-6} 4$ E _γ : weighted average of 196.320 15 (1976Bu05), 196.288 15 (1973GeZZ), both from Ge(Li), and 196.292 17 from curved-crystal spectrometer (1979Bo26). Mult.,δ: from α(K)exp.
240.71 <i>4</i> (268.24)	0.73 2	268.24 268.24	4 ⁻ 4 ⁻	27.515 0	(3) ⁻ 2 ⁻	[E2]		0.0268	0.09 4	ce(K)/(γ +ce)=0.0228 4; ce(L)/(γ +ce)=0.00272 4; ce(M)/(γ +ce)=0.000448 7; ce(N)/(γ +ce)=4.92×10 ⁻⁵ 7; ce(O)/(γ +ce)=1.88×10 ⁻⁶ 3 α (K)=0.0234 4; α (L)=0.00279 4; α (M)=0.000460 7;

					88 Kr β^- de	cay 1976Bu05 (continued)					
$\gamma(^{88}\text{Rb})$ (continued)											
E_{γ}^{\dagger}	Ι _γ ‡#	E_i (level)	J_i^{π}	\mathbf{E}_{f}	J_f^{π}	Comments					
,	,		i			$\alpha(N) = 5.05 \times 10^{-5}$ 7: $\alpha(O) = 1.02 \times 10^{-6}$ 2					
						$a(N)=5.05\times10^{-7}$, $a(O)=1.95\times10^{-5}$					
						$I_{(\gamma+ce)}$: from intensity balance since β feeding is negligible for third-unique forbidden					
						transition.					
311.69 3	0.31 2	1915.52	$(1,2)^{-}$	1603.83	$(0^{-}, 1^{-}, 2^{-})$						
334.71 3	0.42 2	362.240	(2)	27.515	(3)						
362 226 13	0.03 Z 6 50 16	362 240	(1,2) $(2)^{-}$	002.349	$\frac{2}{2^{-}}$						
363.5 5	0.14 9	390.547	(2^{-})	27.515	$(3)^{-}$						
390.543 11	1.86 12	390.547	(2^{-})	0	2-						
391.20 10	0.23 12	1603.83	$(0^{-}, 1^{-}, 2^{-})$	1212.578	$(1,2)^{-}$						
421.70 18	0.03 1	1603.83	$(0^{-},1^{-},2^{-})$	1182.090	(0,1,2)						
471.80 3	2.10 4	862.349	2-	390.547	(2^{-})						
500.02 6	0.28 2	862.349	2-	362.240	$(2)^{-}$						
517.00 8	0.10.5	2231.701	1 * 1 +	1/14./14	0,1 1-2-						
573 27 6	0.102 0.212	1714 714	$0^{-} 1^{-}$	1141 360	$1^{-},2^{-}$						
579.04 14	0.07 3	1441.51	$(1,2^{-})$	862.349	2-,2						
^x 603.21 13	0.12 3										
665.94 6	0.25 4	862.349	2^{-}	196.292	$(1)^{-}$						
677.34 5	0.68 4	2392.147	1+	1714.714	$0^{-}, 1^{-}$						
731.01 9	0.10 3	2392.147	1+	1661.15	1-,2-						
741.34 ^{&} 18	0.10 3	2456.00?	$(0^{-}, 1^{-})$	1714.714	$0^{-}, 1^{-}$						
774.14 6	0.28 4	1915.52	$(1,2)^{-}$	1141.360	1-,2-						
779.12.8	0.28 0	1141.360	1,2 1+	362.240	(2) (0 = 1 = 2 =)						
700.20 4	0.36.3	2392.147	1 1 ⁺	1441 51	(0, 1, 2) $(1, 2^{-})$						
798.65 21	0.08 3	1661.15	$1^{-}.2^{-}$	862.349	2^{-}						
822.01 12	0.26 3	1212.578	$(1,2)^{-}$	390.547	(2^{-})						
834.83 1	37.5 4	862.349	2-	27.515	(3)-						
850.34 5	0.50 3	1212.578	(1,2) ⁻	362.240	$(2)^{-}$						
862.327 19	1.94 5	862.349	2-	0	2-						
8/9.51 19	0.072	2231.761	1'	1352.494	1,2						
883.06 [∞] 14	0.12 2	1245.24?	$(2)^{-}$	362.240	$(2)^{-}$						
944.92 4	0.85 4	1141.360	1,2 1+	196.292	(1)						
950.49 12	0.113 0.243	1352 494	$1^{-}2^{-}$	390 547	(1,2)						
985.780 16	3.80 7	1182.090	(0,1,2)	196.292	$(1)^{-}$						
990.09 9	0.41 5	1352.494	1-,2-	362.240	$(2)^{-}$						
1039.59 <i>3</i>	1.40 5	2392.147	1+	1352.494	1-,2-						
1049.48 12	0.41 3	2231.761	1+	1182.090	(0,1,2)						
x1054.54 20	0.09 3	0001 - 55	. +	1111 215	1- 0-						
1090.53 12	0.18 4	2231.761	1+	1141.360	1-,2-						

4

 $^{88}_{37}\text{Rb}_{51}\text{-}4$

From ENSDF

 $^{88}_{37}$ Rb₅₁-4

$\gamma(^{88}\text{Rb})$ (continued)

E_{γ}^{\dagger}	I_{γ} ^{‡#}	E _i (level)	J_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	E_{γ}^{\dagger}	I_{γ} ‡#	E _i (level)	J_i^π	E_f	\mathbf{J}_{f}^{π}
1141.33 6	3.71 9	1141.360	1-,2-	0	2-	1661.3 <i>3</i>	0.26 6	1661.15	$1^{-}, 2^{-}$	0	2-
1179.51 3	2.88 6	2392.147	1+	1212.578	$(1,2)^{-}$	1685.6 4	1.92 21	2548.420	1+	862.349	2^{-}
1184.95 4	1.99 8	1212.578	$(1,2)^{-}$	27.515	(3)-	^x 1789.14 22	0.13 5				
1209.84 8	0.41 7	2392.147	1+	1182.090	(0,1,2)	1793.3 ^{&} 3	0.10 4	1793.3?	$0^{-}, 1^{-}, 2^{-}$	0	2-
1212.73 17	0.40 14	1212.578	$(1,2)^{-}$	0	2-	^x 1801.3 3	0.11 4				
1245.22 [@] <i>&</i> 4		1245.24?	$(2)^{-}$	0	2^{-}	1892.76 ^{&} 13	0.40 7	2089.07?		196.292	$(1)^{-}$
1245.22 [@] 4	1.05 5	1441.51	$(1,2^{-})$	196.292	$(1)^{-}$	1908.7 4	0.29 4	2771.11	1+	862.349	2^{-}
1250.67 4	3.24 6	2392.147	1+	1141.360	1-,2-	2029.84 <i>3</i>	13.09 25	2392.147	1+	362.240	$(2)^{-}$
1298.78 15	0.27 6	1661.15	$1^{-}, 2^{-}$	362.240	$(2)^{-}$	2035.411 18	10.8 <i>3</i>	2231.761	1+	196.292	$(1)^{-}$
1303.09 24	0.19 7	2548.420	1+	1245.24?	$(2)^{-}$	2186.5 3	0.83 17	2548.420	1+	362.240	$(2)^{-}$
1324.98 4	0.46 10	1352.494	$1^{-}, 2^{-}$	27.515	$(3)^{-}$	2195.84 <i>1</i>	38.1 <i>3</i>	2392.147	1^{+}	196.292	$(1)^{-}$
1335.81 14	0.19 3	2548.420	1+	1212.578	$(1,2)^{-}$	2231.772 21	9.80 19	2231.761	1+	0	2-
1352.32 11	0.46 6	1352.494	$1^{-},2^{-}$	0	2^{-}	2259.5 ^{&} 3	0.09 4	2456.00?	$(0^{-}, 1^{-})$	196.292	(1) ⁻
1369.5 2	4.27 17	2231.761	1^{+}	862.349	2-	2352.08 4	2.11 6	2548.420	1+	196.292	$(1)^{-}$
1406.94 10	0.63 5	2548.420	1+	1141.360	$1^{-}, 2^{-}$	2364.7 3	0.09 4	2392.147	1+	27.515	(3)-
1464.84 9	0.33 4	1661.15	$1^{-},2^{-}$	196.292	$(1)^{-}$	2392.11 4	100.0 3	2392.147	1^{+}	0	2^{-}
1518.39 <i>3</i>	6.22 16	1714.714	$0^{-}, 1^{-}$	196.292	$(1)^{-}$	2408.91 7	0.30 <i>3</i>	2771.11	1+	362.240	$(2)^{-}$
1529.77 <i>3</i>	31.6 5	2392.147	1+	862.349	2^{-}	^x 2535.52 11	0.12 <i>1</i>				
1603.79 5	1.32 8	1603.83	$(0^{-}, 1^{-}, 2^{-})$	0	2-	2548.40 <i>3</i>	1.80 <i>3</i>	2548.420	1+	0	2-
^x 1608.01 20	0.20 5					2771.02 5	0.43 2	2771.11	1+	0	2^{-}

[†] From 1976Bu05, except where noted. [‡] From 1976Bu05, normalized to $I\gamma(2392\gamma)=100$. [#] For absolute intensity per 100 decays, multiply by 0.346 *16*.

S

^(a) Multiply placed. ^(b) Placement of transition in the level scheme is uncertain. ^x γ ray not placed in level scheme.

⁸⁸Kr β^- decay 1976Bu05

88 Kr β^- decay 1976Bu05

