⁸⁸Tc ε decay (5.8 s) 1996Od01

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. A. Mccutchan and A. A. Sonzogni	NDS 115, 135 (2014)	1-Nov-2013

Parent: ⁸⁸Tc: E=y; $J^{\pi}=(2^+,3^+)$; $T_{1/2}=5.8 \text{ s } 2$; $Q(\varepsilon)=1.101\times 10^4 \ 15$; $\%\varepsilon+\%\beta^+$ decay=100.0

⁸⁸Tc activity produced by ⁵⁸Ni(³²S,pn), E=100-105 MeV. Measured Eγ, Iγ, γγ and γβ coincidences, and T_{1/2} using two HPGe detectors and one LEPS detector. Channel selection performed with a tape transport system and a rotation disk. Also 1993OdZY, 1995ShZX. Single and coincident γ ray spectra are published in 1993OdZY.

Other: 1992We02, ⁸⁸Tc activity produced by ⁵⁸Ni(³⁶Ar, α pn), E=145 MeV. Measured E γ , I γ in coincidence with delayed 511 keV annihilation radiation. Observed transitions depopulating the yrast 8⁺ and 7⁻ levels in ⁸⁸Mo. Experimental setup not optimized for a β -decay study and thus the results are not adopted here.

With a Q value of 11 MeV and levels populated only up to 1.7 MeV, it is likely that the decay scheme is incomplete and Log ϕ t and I($\varepsilon + \beta^+$) values should be considered approximate.

 α : Additional information 1.

⁸⁸Mo Levels

E(level)	J^{π}	$T_{1/2}^{\dagger}$
0 740.53 <i>5</i> 1654.77 <i>19</i>	0^+ 2^+ 4^+	8.0 min 2

[†] From the Adopted Levels.

ε, β^+ radiations

E(decay)	E(level)	$I\beta^+$	$\mathrm{I}\varepsilon^{\ddagger}$	$\log ft^{\dagger}$	$I(\varepsilon + \beta^+)^{\ddagger}$	Comments
$(9.35 \times 10^3 \ 15)$	1654.77	≈26	≈0.13	≈5.7	≈26	av $E\beta$ =3938 74; ε K=0.00426 24; ε L=0.00051 3; sM+=0.000118 7
$(1.027 \times 10^4 \ 15)$	740.53	≈74	≈0.27	≈5.5	≈74	av E β =4388 74; ε K=0.00314 16; ε L=0.000377 19; ε M+=8.7×10 ⁻⁵ 5

[†] Approximate values, from I($\varepsilon + \beta^+$) and assuming y=0.0.

[‡] Absolute intensity per 100 decays.

$\gamma(^{88}Mo)$

The gamma intensities are obtained from a mixed source experiment, assuming that the 6.4 s isomer only feeds the 2627 and the 2101 levels, while the 5.8 s isomer only feeds the 1655 and the 741 levels. Alternatively, the 6.4 s isomer could feed only the 2627 level, while the 5.8 s isomer could feed the 2101, 1655, and 741 levels. The mixed source intensities are 100 % (740.5 γ), 44 % 6 (914.2 γ), 6 % 3 (445.9 γ), 19 % 4 (972.1 γ).

Eγ	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [†]	α	$I_{(\gamma+ce)}$ ^{‡#}	Comments
740.53 5	740.53	2+	0 0+	E2	1.60×10 ⁻³	100	$\begin{aligned} & \operatorname{ce}(\mathrm{K})/(\gamma+\mathrm{ce}) = 0.001402\ 20;\ \operatorname{ce}(\mathrm{L})/(\gamma+\mathrm{ce}) = 0.0001621\ 23;\\ & \operatorname{ce}(\mathrm{M})/(\gamma+\mathrm{ce}) = 2.90 \times 10^{-5}\ 4;\ \operatorname{ce}(\mathrm{N})/(\gamma+\mathrm{ce}) = 4.38 \times 10^{-6}\\ & 7\\ & ce(\mathrm{O})/(\gamma+\mathrm{ce}) = 2.39 \times 10^{-7}\ 4\\ & \alpha(\mathrm{K}) = 0.001404\ 20;\ \alpha(\mathrm{L}) = 0.0001624\ 23;\\ & \alpha(\mathrm{M}) = 2.90 \times 10^{-5}\ 4;\ \alpha(\mathrm{N}) = 4.39 \times 10^{-6}\ 7 \end{aligned}$

Continued on next page (footnotes at end of table)

				⁸⁸ Tc <i>e</i>	e decay (5.8 s)	1996Od	01 (continued)	
	γ ⁽⁸⁸ Mo) (continued)							
Eγ	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [†]	α	$I_{(\gamma+ce)}$ ^{‡#}	Comments	
914.23 18	1654.77	4+	740.53 2+	E2	9.52×10 ⁻⁴	26 7	$\begin{array}{c} {\rm ce}({\rm K})/(\gamma+{\rm ce})=0.000836\ I2;\\ {\rm ce}({\rm L})/(\gamma+{\rm ce})=9.53\times10^{-5}\ I4;\\ {\rm ce}({\rm M})/(\gamma+{\rm ce})=1.700\times10^{-5}\ 24;\\ {\rm ce}({\rm N})/(\gamma+{\rm ce})=2.58\times10^{-6}\ 4\\ {\rm ce}({\rm O})/(\gamma+{\rm ce})=1.432\times10^{-7}\ 20\\ \alpha({\rm K})=0.000837\ I2;\ \alpha({\rm L})=9.54\times10^{-5}\ I4;\\ \alpha({\rm M})=1.702\times10^{-5}\ 24;\ \alpha({\rm N})=2.58\times10^{-6}\ 4\\ \end{array}$	

[†] From the Adopted Gammas.
[‡] From I(ε+β⁺) values.
[#] Absolute intensity per 100 decays.

⁸⁸Tc ε decay (5.8 s) 1996Od01

Decay Scheme

⁸⁸₄₂Mo₄₆