				History		
	Ту	pe	A	Author	Citation	Literature Cutoff Date
	Full Ev	aluation E. A	A. Mccutchan	and A. A. Sonzogni	NDS 115, 135 (2014)	1-Nov-2013
$Q(\beta^{-})=2918 \ 3$ $S(2n)=12568 \ 3$ α : Additional	; S(n)=7053 3; S(2p)=23 information	<i>3</i> ; S(p)=13089 766 <i>4</i> (2012Wa 1.	$Q(\alpha) = -6$ (38).	5168 <i>3</i> 2012Wa38		
				⁸⁸ Kr Leve	ls	
				Cross Reference (X	REF) Flags	
			880 0	- 1 - 252		
			$ \begin{array}{c} \mathbf{A} & \overset{\text{so} Br}{\mathbf{\beta}} \\ \mathbf{B} & \overset{\text{go} Br}{\mathbf{\beta}} \\ \mathbf{C} & \overset{\text{go} Br}{\mathbf{\beta} \\ \mathbf{C} & \overset{\text{go} Br}{\mathbf{\beta}} \\ \mathbf{C} & \overset{\text{go} Br}{\mathbf{\beta} \\ \mathbf{C} & \overset{\text{go} Br}{\mathbf{\beta} \\ \mathbf{C} & \overset{\text{go} B$	The decay F Con p) G ²⁰⁸ SF decay	ulomb excitation:projectil Pb($^{18}O,X\gamma$)	e
E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF		Comment	S
0.0	0+	2.825 h <i>19</i>	ABCDEFG	$%β^{-}=100$ T _{1/2} : weighted avera 2.805 h 25 (1964C δ <r<sup>2>=0.282 fm² 4 t 0.282 fm² 53 (199</r<sup>	ge of 2.804 h <i>15</i> (2012W (101). Others: 2.78 h 6 (1) relative to ⁸⁶ Kr (2013An(5Ke04) and 0.304 fm ² 3	 (a21), 2.860 h <i>17</i> (1972Eh02) and 949Ko13), 2.92 h <i>17</i> (1940Gl05). (2) evaluation). Measured values: 7 (1990Sc30).
775.32 4	2+	11.1 ps <i>12</i>	ABCDEFG	B(E2) \uparrow =0.090 9 J ^{π} : L(t,p)=2. T _{1/2} : deduced from t B(E2) \uparrow : preliminary	measured $B(E2)$ and adop	ted γ -ray properties.
1577.43 4	2+		ABCD	XREF: C(1588). $I^{\pi}: L(t p)=2$	result given in 2007. Muo	, 20091112211.
1643.78 6	4+		ABCDE G	XREF: B(?)C(1654). I^{π} : (E2) 868 γ to 2 ⁺ .	L(t,p)=3.4	
2103.81 8	(4 ⁺)		A CDE G	XREF: C(2115). J ^{π} : stretched Q or Δ J	$I=0, D 460\gamma$ gives J=4 or	6. 1328 γ to 2 ⁺ prefers J=4
2216.08 6	2+		A C	XREF: C(2224). J^{π} : L(t,p)=2.		purity.
2341.99 6	(3,4+)‡		A	· · =(:,r) =:		
2370.26 7 2419.62 6	(3^{-})		A C	XREF: C(2379).		
2119.02 0	(5)		n c	J^{π} : L(t,p)=3,4 with L	2=3 better fit.	
2550.34 11	(4+)		A C	XREF: C(2558). J^{π} : L(t,p)=3,4 with L	∠=4 better fit.	
2630.58 6	$(3,4^+)^{\ddagger}$		A	VDEE. C(2(59)		
2031.21 0	Ζ.		AC	J^{π} : L(t,p)=2.		
2775.83 10	0+		A C	XREF: C(2789). J^{π} : L(t,p)=0.		
2828.49 7	$(1,2^+)^{@}$		A			
2855.5 <i>3</i> 2875.04 <i>7</i>	(5) (2 ⁺)	≤1 ps	E G	J^{π} : D+Q 752 γ to (4* T _{1/2} : from observed J^{π} : 1231 γ to 4*, 287). Doppler broadening of th 5γ to 0^+ .	the 752 γ in ²⁰⁸ Pb(¹⁸ O,X γ).
2929.32 8	$(3,4^+)^{\frac{4}{4}}$		A			
2945.45 10 2966 10 3044.64 9	$(1,2^{-})^{-}$ $(3^{-})^{-}$		A C A	J^{π} : L(t,p)=3,4 with L	∠=3 slightly better fit.	

Adopted Levels, Gammas (continued)

⁸⁸Kr Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	XRE	F	Comments
3113.51 21	$(1.2^{+})^{@}$		A		
3160.93 ^{&} 25	(5)			G	I^{π} : (D+O) 1517 γ to 4 ⁺ I (p t)>5 for level at 3169 10
2162 42 0	(3)		۰ C L		$J : (D + Q) I J I V (0 + 1, E(p, t) \le J I 0 I I e V (1 at 310) 10.$
3103.43 9	(3,4)		A _		
3167.15 25	(6)		C E	G	$J^{*}: Q \ 1523\gamma \text{ to } 4^{+}, \ L(p,t) \ge 5 \text{ for level at } 3169 \ 10.$
3204.00 11	3- 4+		A C		$I^{\pi} \cdot I(t n) - 3A$
3295 2 3	(5.6)	<1 ns	ר ד	G	The from observed Doppler broadening of the 752 γ in ²⁰⁸ Pb(¹⁸ O X γ)
5275.2 5	(3,0)	<u>s</u> 1 ps			$J_{1/2}^{\pi}$. In other observed Dopplet broadening of the 7527 m γ to (5,777).
3312 10	0		C		J^{π} : L(t,p) \geq 5.
3331.62 21	$(1,2^+)^{\textcircled{0}}$		Α		
3335.92 8	$(3,4^+)^{\ddagger}$		Α		
3341.49 11	(2^{+})		Α		J^{π} : 1698 γ to 4 ⁺ , 3341 γ to 0 ⁺ .
3362.13 7	0		Α		
3399.19 8	$(1,2^+)^{\textcircled{0}}$		Α		
3519 10			C		
3553.3 10	0 ⁺		E		
3608 10	2		C		J^{A} : L(t,p)=2.
3032 10	3,4				$J^{*}: L(l,p)=3,4.$
5710.04 11	(3)		АC		I^{π} : I (t n)=3.4 with I =4 better fit but log $tt=7.1$ from (2 ⁻)
3761 10	34+		C		J^{π} : L(t,p)=3.4.
3770.78 8	$(1^{-},2^{+})$		Α		J^{π} : 1351 γ to (3 ⁻), 3770 γ to 0 ⁺ .
3866 10			С		
3904.7 5			E	G	
3920.9 <i>3</i>	(7)		DE	G	J^{π} : D+Q 754 γ to (6), Q 760 γ to (5).
3932 10	(a +)		C		
4048.4 3	(2^{+})		AC		XREF: $C(4036)$.
4100 24 11	(2^{-})				J ^{-1} : L(l,p)=(2).
4100.34 11	(5)		AC		$I_{\pi} = I_{\pi} (t n) - (3)$
4220 10	$(3^{-}.4^{+})$		C		J^{π} : L(t,p)=(3.4).
4268.32 11	$(1^{-},2,3)$		AC		XREF: C(4261).
					J^{π} : 1849 γ to (3 ⁻), 3493 γ to 2 ⁺ , log <i>ft</i> =6.9 from (2 ⁻).
4287.7 3	$(1,2^+)^{@}$		A		
4342.6 4	(8)			G	J^{π} : 422 γ to (7), 1175.5 γ to (6).
4372 10			С		
4430 10	(2^{+})		С		J^{π} : L(t,p)=(2).
4479.2 7				G	
4560.15 22	$(1,2,3)^{\#}$		Α		
4563.2 <i>3</i>	$(1,2^+)^{@}$		Α		
4596.85 17	$(1^{-},2^{+})$		Α		J^{π} : 2177 γ to (3 ⁻), 4597 γ to 0 ⁺ .
4707.78 15	$(1^{-},2^{+})$		Α		J^{π} : 2288 γ to (3 ⁻), 4708 γ to 0 ⁺ .
4857.5 5	(1			G	
4923.51 10	(1 ⁻ ,2,3)		A		J^{π} : 2504 γ to (3 ⁻), log <i>ft</i> =6.2 from (2 ⁻).
4985.75 15	$(1,2^{+})^{\textcircled{0}}$		Α		
5018.7 3	(1,2 ⁺) [@]		Α		
5070.27 18	$(2^+,3,4^+)$		Α		J^{n} : 3426 γ to 4 ⁺ , 3493 γ to 2 ⁺ .
5088.2 4	$(1,2^+)^{\textcircled{0}}$		Α		
5193.0 5	(9)			G	J^{n} : 850 γ to (8), 1272 γ to (7).
5270.5 5	$(1,2,3)^{\#}$		Α		
5439.4 5	$(1,2,3)^{\#}$		Α		
5495.81 20	(1,2,3)		Α		J^{π} : 3076 γ to (3 ⁻), log <i>ft</i> =6.0 from (2 ⁻).

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

88 Kr Levels (continued)

E(level) [†]	J^{π}	XREF	Comments
5503.3 <i>3</i>	$(1,2^+)^{@}$	A	
5627.1 4	$(1,2,3)^{\#}$	A	
5693.4 <i>3</i>	(1,2,3)	Α	J^{π} : 3274 γ to (3 ⁻), log <i>ft</i> =7.2 from (2 ⁻).
5726.2 3		A	
5856.8 0 5914.99 20	$(1^{-},2^{+},3^{-})$	AG	J^{π} : 3496y to 3 ⁻ , 5916y to 0 ⁺ .
5972.9 5	(1,2,3)#	A	
5977.47 23	$(1,2,3)^{\#}$	Α	
5988.5 <i>3</i>	(1,2,3)	Α	J^{π} : 3569 γ to (3 ⁻); log <i>ft</i> =6.3 from (2 ⁻).
6034.4 4	$(1,2^+)^{(a)}$	Α	
6071.2 4	$(1,2^+)^{@}$	Α	
6109.2 <i>12</i>	-	G	
6231.7 <i>3</i>	$(1,2^+)^{(a)}$	Α	
6233.5 7		G	
6539.2 5	$(1,2,3)^{\#}$	Α	
6718.3 4	$(1,2,3)^{\#}$	Α	
6758.0 5	$(1,2,3)^{\#}$	Α	
6999.5 5	$(1,2^+)^{@}$	Α	
7490.6 10		G	
7969.5 11		G	

[†] Levels with ΔE <2 keV are deduced from the Adopted Gammas using least-squares fit, the others are from (t,p).

[‡] From γ to 2⁺ and 4⁺ levels, no γ to 0⁺, log ft=7.4 - 8.0 in β^- decay of (2⁻) ⁸⁸Br.

[#] From γ to 2⁺, log ft=6.2 - 7.3 in β^{-} decay of (2⁻) ⁸⁸Br.

[@] From γ to 0^+ .

& Ordering of the 754γ - 1524γ and 760γ - 1517γ cascades is reversed in ²⁴⁸Cm SF decay (2000Rz02) and ²⁵²Cf SF decay (2011Li34) resulting in levels at 2397 and 2404 in the former and 3161 and 3168 in the latter. The level scheme of 2011Li34 is adopted here based on the observation of an additional linking transition and the presence of a corresponding level observed in (t,p).

						Adopted	Levels, Gan	nmas (continu	
							γ (⁸⁸ K	r)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	δ	α	Comments
775.32	2+	775.28 6	100	0.0	0+	E2		9.27×10 ⁻⁴	$\alpha(K)=0.000822 \ 12; \ \alpha(L)=8.88\times10^{-5} \ 13; \ \alpha(M)=1.436\times10^{-5} \ 21; \ \alpha(N)=1.442\times10^{-6} \ 21 \ B(E2)(W.u.)=7.8 \ 9 \ Mult : from xy(\theta) in {}^{248}Cm SE decay and Coulomb Excitation$
1577.43	2+	802.14 6 1577.41 6	100.0 <i>10</i> 26.34 <i>24</i>	775.32 0.0	$2^+_{0^+}$				
1643.78	4+	868.4 1	100	775.32	2+	(E2)		6.96×10 ⁻⁴	$\alpha(K)=0.000617 \ 9; \ \alpha(L)=6.63\times10^{-5} \ 10; \ \alpha(M)=1.073\times10^{-5} \ 15; \ \alpha(N)=1.079\times10^{-6} \ 16$ Mult : O from $\gamma\gamma(\theta)$ in ²⁵² Cf SE decay, assumed E2
2103.81	(4+)	460.02 5	100 [‡] <i>17</i>	1643.78	4 ⁺	M1+E2	+0.26 [#] 4		Mult.: D+Q from $\gamma\gamma(\theta)$ in ²⁵² Cf SF decay, $\Delta\pi$ =no from level scheme.
2216.08	2+	1328.9 ⁺ 3 1440.5 <i>1</i> 2216.3 <i>3</i>	13# 4 100.0 12 17.1 12	775.32 775.32 0.0	2^+ 2^+ 0^+				
2341.99	(3,4 ⁺)	125.9 <i>1</i> 698.2 <i>1</i> 764.6 <i>1</i>	1.1 <i>4</i> 11.3 <i>9</i> 21.7 <i>13</i>	2216.08 1643.78 1577.43	2 ⁺ 4 ⁺ 2 ⁺				
2370.26		1566.7 <i>I</i> 792.9 <i>I</i> 1594.8 <i>I</i>	100 <i>19</i> 100 <i>4</i> 17 8	775.32 1577.43 775.32	2^+ 2^+ 2^+				
2419.62	(3 ⁻)	1644.3 <i>1</i>	100.0 21	775.32	$\frac{1}{2^{+}}$				
2550.34 2630.58	(4^+) $(3,4^+)$	1775.0 <i>I</i> 288.68 <i>I0</i> 986.4 <i>I</i> 1053.5 <i>I</i> 1855.2 <i>I</i>	100 13.1 <i>17</i> 19.5 <i>21</i> 100.0 <i>21</i> 51 <i>4</i>	775.32 2341.99 1643.78 1577.43 775.32	2^+ (3,4 ⁺) 4^+ 2^+ 2^+				
2651.21	2+	309.2 <i>3</i> 1073.74 <i>6</i> 1876.0 <i>1</i> 2650 8 <i>3</i>	8 <i>3</i> 100 <i>3</i> 32 <i>5</i> 15 5	2341.99 1577.43 775.32	$(3,4^+)$ 2^+ 2^+ 0^+				
2775.83	0^{+}	1198.4 <i>1</i> 2000.4 <i>3</i>	100 7 55 9	1577.43 775.32	2^+ 2^+				
2828.49	(1,2+)	486.5 <i>I</i> 612.4 <i>I</i> 1251.1 <i>I</i> 2053.08 <i>I</i> 2 2828.5 <i>3</i>	25 7 100 20 40 10 64 5 74 6	2341.99 2216.08 1577.43 775.32 0.0	(3,4 ⁺) 2 ⁺ 2 ⁺ 2 ⁺ 0 ⁺				
2855.5 2875.04	(5) (2 ⁺)	751.8 [‡] 3 658.9 <i>I</i> 1231.3 <i>I</i> 1297.6 <i>I</i> 2099.6 3	100 [‡] 13 <i>3</i> 9.6 22 10.4 <i>11</i> 14 <i>3</i>	2103.81 2216.08 1643.78 1577.43 775.32	(4 ⁺) 2 ⁺ 4 ⁺ 2 ⁺ 2 ⁺	D+Q [#]			

4

From ENSDF

 $^{88}_{36}\mathrm{Kr}_{52}$ -4

Adopted Levels, Gammas (continued)

$\gamma(^{88}\text{Kr})$ (continued)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
2387.7 3 51 5 775.32 2+	
3167.15 (6) $1523.4^{\ddagger} 3 100^{\ddagger}$ 1643.78 4 ⁺ Mult.: Q from $\gamma\gamma(\theta)$ in ²⁰⁸ Pb(¹⁸ O,X γ).	
$3204.00 862.0 1 27 5 2341.99 (3,4^+)$	
2428.7 <i>3</i> 100 8 775.32 2 ⁺	
3295.2 (5,6) 439.8 3 100 30 2855.5 (5) D $E_{\gamma},I_{\gamma},Mult.:$ From ²⁰⁸ Pb(¹⁸ O,X γ).	
1191.2 5 40 13 2103.81 (4 ⁺) E_{γ}, I_{γ} : From ²⁰⁸ Pb(¹⁸ O, X γ).	
3331.62 (1,2 ⁺) 2556.1 3 100 20 775.32 2 ⁺	
$3331.7 \ 3 \ 40 \ 20 \ 0.0 \ 0^+$	
3335.92 (3,4 ⁺) 1692.0 <i>I</i> 16 <i>I</i> 0 1643.78 4 ⁺	
$1758.6 I 100 I2 1577.43 2^+$	
3341.49 (2 ⁺) 1697.7 1 25 15 1643.78 4 ⁺	
$3341.4.3 100.50 0.0 0^+$	
3362.13 942.5 1 90.15 2419.62 (3 ⁻)	
$1146.0 I = 69 I 3 = 2216.08 2^{-1}$	
1/84./1 46 / 15//.45 2 2586 0 2 100 12 775 22 2+	
$2300 10 (12^{+}) 1028 0 1 22 4 2370 26$	
3399.19 (1,2) 1026.91 234 23/0.20 182171 153 157743 2 ⁺	
$2624.03 100.4 775.22 2^+$	
339953 375 0.0 0^+	
2552.2 1000 5 [±] 100 [±] 1642.78 4 [±]	
3333.3 1909.3' 100' 1043.76 4 2710.04 (2) 1200.4 1 21.2 16 2410.62 (2 ⁻)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
2132.73 2.010 $1377.7522034 7 3 100 4 775 32 2+$	
3770.78 $(1^{-}.2^{+})$ $1351.2.7$ 71.48 2419.62 (3^{-})	
$142887 10070 2341.99 (3.4^+)$	
$2995.2 \ 3 \ 100 \ 17 \ 775.32 \ 2^+$	
3770.3 3 29 10 0.0 0+	

S

$\gamma(^{88}$ Kr) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	Comments
3904.7		609.5 4	100	3295.2 (5.6)		$E_{\nu} I_{\nu}$: From ²⁰⁸ Pb(¹⁸ O,X γ).
3920.9	(7)	753 8 [‡] 2	$100^{\ddagger} 25$	3167 15 (6)	D+0 [#]	
5720.7	(7)	$750.0^{\ddagger} 2$	88 25	3160.03 (5)	0 [#]	
4048 4	(2^{+})	2470.9.3	20.8	1577 43 2+	Q	
1010.1	(2)	4048.2 5	100 50	$0.0 0^+$		
4100.34	(3 ⁻)	2522.87 10	100	1577.43 2+		
4268.32	$(1^{-},2,3)$	1848.7 <i>1</i>	4.2 16	2419.62 (3-)		
		3492.8 <i>3</i>	100 11	775.32 2+		
4287.7	$(1,2^+)$	3512.5 3	100 33	775.32 2+		
		4287.2 5	53 23	0.0 0+		200 . 10
4342.6	(8)	421.6 4	100 50	3920.9 (7)		E_{γ}, I_{γ} : From $\frac{208}{100}$ Pb($^{18}O, X\gamma$).
		1175.5 7	70 30	3167.15 (6)		E_{γ}, I_{γ} : From ²⁰⁸ Pb(¹⁸ O, X γ).
4479.2	(1	574.4 4	100	3904.7		E_{γ}, I_{γ} : From ²⁰⁸ Pb(¹⁸ O, X γ).
4560.15	(1,2,3)	2983.1 3	100 13	1577.43 2		
1563 2	$(1, 2^+)$	3/84.3 3	21 10	775.52 Z ²		
4303.2	(1,2)	4563 3 5	100.0.20	2370.20		
4596 85	$(1^{-}2^{+})$	2177 3 3	34 3	$2419.62(3^{-})$		
1570.05	(1,2)	3019.3 3	100 6	$1577.43 2^{+}$		
		3821.4 3	13.5 24	775.32 2+		
		4596.7 5	4.1 18	$0.0 0^+$		
4707.78	$(1^{-},2^{+})$	2288.0 <i>3</i>	11.8 8	2419.62 (3 ⁻)		
		2492.0 3	8.2 16	2216.08 2^+		
		3130.4 3	18 3	1577.43 2+		
		3932.0 3	100 3	775.32 2		
1057 5		4/0/.8 3	8.2 10 100	$0.0 0^{-1}$		E. L. Errer 208 pL (180 X.)
4857.5	(1 - 23)	930.0 4 2503.00.12	100	3920.9 (7) 2410.62 (3 ⁻)		E_{γ},I_{γ} : From 2^{-1} PD $(2^{-1}O,X\gamma)$.
4923.31	(1,2,3)	2707 3 3	646	2216.08 2+		
		4148.05 13	100.3	775.32 2+		
4985.75	$(1,2^+)$	4209.9 5	63	775.32 2+		
		4985.64 16	100 <i>3</i>	$0.0 0^+$		
5018.7	$(1,2^+)$	3440.9 <i>3</i>	13 <i>3</i>	1577.43 2+		
		5019.5 5	100 4	$0.0 0^+$		
5070.27	$(2^+,3,4^+)$	2650.8 3	46 16	2419.62 (3 ⁻)		
		3426.2 3	100 14	1643.78 4+		
5000 2	$(1, 2^+)$	3492.8 3	40 20	$15/7.43 2^{+}$		
3008.2	(1,2)	+312.4 J 5088 4 5	42 10	113.32 2 0.0 0 ⁺		
5193.0	(9)	850 1	15 7	4342 6 (8)		$F_{11}L_{11}^{11}$ From 208 Pb $(^{18}$ O X $_{22})$
5175.0		1272 1 5	100 30	39209 (7)		$F_{\rm v}$ L.: From ²⁰⁸ Pb(¹⁸ O X ₂)
5270.5	(1,2,3)	4495.1 5	100 50	775.32 2+		$L_{\gamma,t\gamma}, 110111 10(-0,x\gamma).$

From ENSDF

Adopted Levels, Gammas (continued)

$\gamma(^{88}$ Kr) (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Comments
5439.4	(1.2.3)	4663.9.5	100	775.32 2+	
5495.81	(1.2.3)	3076.4 3	2.8 19	$2419.62(3^{-})$	
		3270.2 @ 3	100.0	2216.08 2+	
		4720.9.5	88.6	775 32 2+	
5503 3	(1.2^+)	3161.2.3	100 33	$2341.99(3.4^+)$	
5505.5	(1,2)	5503.2.5	13 10	$0.0 0^+$	
5627.1	(1.2.3)	4049.6.5	32 21	1577.43 2+	
	(-,-,-)	4851.6 5	100 7	775.32 2+	
5693.4	(1,2,3)	3273.7 3	100	2419.62 (3 ⁻)	
5726.2		3510.0 <i>3</i>	100	2216.08 2+	
5856.8		999.2 <i>4</i>	100	4857.5	$E_{\gamma}I_{\gamma}$: From ²⁰⁸ Pb(¹⁸ O,X γ).
5914.99	$(1^{-},2^{+},3^{-})$	3495.5 <i>3</i>	100 11	2419.62 (3-)	
		3698.3 <i>3</i>	55 41	2216.08 2+	
		5915.7 <i>5</i>	23 5	$0.0 0^+$	
5972.9	(1,2,3)	5197.4 5	100	775.32 2+	
5977.47	(1,2,3)	3635.3 <i>3</i>	14 7	2341.99 (3,4+)	
		4400.0 5	70 7	1577.43 2+	
		5202.2 5	100 43	775.32 2+	
5988.5	(1,2,3)	3568.8 <i>3</i>	60 7	2419.62 (3-)	
		5213.1 5	100 9	775.32 2+	
6034.4	$(1,2^{+})$	5259.3 5	38 <i>23</i>	775.32 2+	
		6033.8 5	100 23	$0.0 0^+$	
6071.2	$(1,2^{+})$	5295.7 5	100 6	775.32 2+	
		6071.0 5	74	$0.0 0^+$	200 10
6109.2		1630 <i>1</i>	100	4479.2	E_{γ}, I_{γ} : From ^{20o} Pb(^{1o} O, X γ).
6231.7	$(1,2^{+})$	4015.5 5	59 10	2216.08 2+	
		5456.3 5	100 6	775.32 2+	
		6231.5 5	53	0.0 0'	
6233.5	(1.0.0)	1040.5 5	100	5193.0 (9)	E_{γ}, I_{γ} : From ²⁰⁰ Pb(¹⁰ O, X γ).
6539.2	(1,2,3)	5763.7 5	100	775.32 2+	
6/18.3	(1,2,3)	43/6.2 5	100 63	2341.99 (3,4*)	
6759 0	(1, 2, 2)	5942.8 5	100 50	115.32 2° 775.22 2+	
0/38.0	(1,2,3)	3982.3 J	100	$113.32 2^{+}$	
7400 6	(1,2)	1257 1 7	100	0.0 0	E. L. Error $208 \text{ Db}/18 \text{ O} \text{ V}_{2}$
/490.6		1257.17	100	0233.3	$E_{\gamma,l\gamma}$: From $\frac{1}{2}$ ($R_{\gamma,l\gamma}$).
/969.5		478.94	100	/490.6	E_{γ},I_{γ} : From $2^{\circ\circ}Pb(2^{\circ\circ}O,X\gamma)$.

[†] From ⁸⁸Br β⁻ decay, unless noted otherwise.
[‡] From ²⁵²Cf SF decay.
[#] From γγ(θ) in ²⁵²Cf SF decay.
[@] Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{88}_{36}{
m Kr}_{52}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{88}_{36}{
m Kr}_{52}$

From ENSDF

Adopted Levels, Gammas

Level Scheme (continued)

Intensities: Relative photon branching from each level

5

11