Adopted Levels

		History					
	Туре	Author	Citation	Literature Cutoff Date			
	Full Evaluation	E. A. Mccutchan and A. A. Sonzogni	NDS 115, 135 (2014)	1-Nov-2013			
$\begin{aligned} Q(\beta^{-}) = &10582 \ SY; \ S(n) = &4131 \ SY; \ S(p) = &17847 \ SY; \ Q(\alpha) = &-10153 \ SY \\ \Delta Q(\beta^{-}) = &540; \ \Delta S(n) = &643; \ \Delta S(p) = &945; \ \Delta Q(\alpha) = &783 \ (2012Wa38). \end{aligned}$ $S(2n) = &6520 \ syst \ 585; \ Q(\beta^{-}n) = &7409 \ syst \ 503 \ (2012Wa38). \end{aligned}$ The only information on ⁸⁸ Ge is its observation following the fission of ²³⁸ U at 750 MeV/nucleon on Be targets (1997Be70); fragments were identified by charge and time of flight using the Fragment Separator (FRS). Other: 2011Ad09,2010Ad05: calculation of the production cross section for ⁸⁸ Ge in the ²⁴⁴ Pu(⁴⁸ Ca,X) reaction. \end{aligned}							
		⁸⁸ Ge Leve	els				

E(level)	\mathbf{J}^{π}	T _{1/2}	Comments
0.0	0^{+}	>300 ns	$\%\beta^{-}=?;\ \%\beta^{-}n=?$
			E(level), J^{π} : assuming that the observed events correspond to the ground state.
			$T_{1/2}$: assuming that $T_{1/2}$ has to be of the same order or larger than the time of flight through the
			separator, which for this experiment was ≈ 300 ns. T _{1/2} is expected to be much larger, some

estimates of the half-life are 66 ms (systematics, 2002Pf04) and 162 ms (QRPA theory, 2003Mo09). $\%\beta^-$ n: this level is expected to undergo beta delayed neutron emission, some estimates of $\%\beta^-$ n include 17% (systematics, 2002Pf04) and 49% (QRPA theory, 2003Mo09).