Adopted Levels, Gammas

		Type		History	Citation	Literature Cutoff Date						
	F	ull Evaluation	T. D. J.	ohnson and W. D. Kulp(a)	NDS 129, 1 (2015)	27-Jul-2015						
$Q(\beta^{-})=-5473$ $Q(\beta^{-}n)=-1828$ Mass excess fr For model calc ; Systematics of Other recent th	8; S(n)=9 85 7, Q(& com 2008) culations of of 1-qp co neory and	$449 \ 6; \ S(p)=72$ $p)=-2112 \ 4.$ We 10: -79341. of level energie nfigurations, 20 calcuations:20	352 <i>15</i> ; Q 4 <i>53</i> keV s and con 010Ro27. 10Ro27,2	$Q(\alpha) = -4974 \ 8 \ 2012Wa38$, from 2012Ka13: -79343.9 figurations, see 1985Ox01. 006Es02.	9 <i>50</i> keV, using ⁹⁷ Mo a	as reference (jyfltrap).						
				⁸⁷ Zr Leve	els							
				Cross Reference (X	(REF) Flags							
			A (H B ⁸⁷ C ⁸⁷	II,xnγ) Nb β^+ decay (2.6 min) Nb β^+ decay (3.75 min)	D 87 Zr IT decay (1 E 90 Zr(3 He, 6 He)	4.0 s)						
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF		Comment	S						
0.0	9/2+	1.68 h <i>1</i>	ABCDE	 E %ε+%β⁺=100 μ=-0.895 9; Q=+0.423 48 (2002Fo12,2003Th03) J^π: from logft=5.7 allows J^π=9/2⁺, 7/2⁺, or 11/2⁺. A logft=8.10 to a 5/2⁻ level rules out 11/2⁺. logft=6.77 to the 11/2⁺ 1591.3 level rules out 7/2⁺. Collinear laser spectroscopy of cool bunched ion beams was performed on ⁸⁷Zr providing information on mean-square charge radii, magnetic moments, and extracted quadrupole moments for the ground state. In addition, these measurements provide additional arguments for the 9/2⁺ assignment for the ground state based on Zr systematics of strong prolate deformations for N < 50 (2002Fo12). T_{1/2}: from 1984Pr01. However, their measured results of 1.684 1 and 1.667 6 would give an average of about 1.682 3. So, the authors seem to have chosen to increase their final uncertainty. Other: 1.69 h 2 (1989Sh39). μ,Q: from collinear LASER spectroscopy. β₂=0.10 1 from 2002Fo12. Mean square charge radius around 18.7 fm² corresponding to β₂ between 0.1 and 0.2 (2002Ca47) from LASER spectroscopy. The 9/2, as opposed to 7/2, spin assignment is consistent with the larger quadrupole moment. See 2002Fo12 for more detail. J^π: See 335 level. ØIT=100 μ=+0.642 7 (2002Fo12) μ: from collinear LASER spectroscopy. J^π: Uniquely established using collinear laser spectroscopy, see 2002Fo12. E3γ from the 335 level to the 200 level and M1+E2γ from the 200 level to the gs, establishes π(335 level)=- and J^π(200 level)=7/2⁺. T_{1/2}: from isomeric decay. WIT: no ε decay from this level has been observed. 								
200.91 <i>12</i> 335.84 <i>19</i>	7/2 ⁺ 1/2 ⁻	2.44 ns <i>10</i> 14.0 s <i>2</i>	ABCDE A CDE									
470.63 12	$(7/2^+)$		AB	J^{π} : from log <i>ft</i> =5.8 from (distribution measurement	$9/2^+$) and Δ J=1 transint.	tion to $9/2^+$ based on angular						
523.7 23 589.3 17 801.50 15 817.45 22 931.53 24 1061 15	(7/2)		B B AB B E A E									

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

⁸⁷Zr Levels (continued)

E(level) [†]	J#‡	T _{1/2} #	XRE	EF	Comments
1069.42 19	$(13/2)^+$	<49 ps	A		
1087.37 15	(9/2)	1	AB		
1124.88 20	$(11/2^+)$		Α		
1284.0 23			В		
1287.5 23			В		
1505.5 23			В		
1656.9.3	$(11/2^+)$		Α		
1669 4			В		
1691.3 3	(13/2)		Α		
1749 4			В		
1884 4 3	$(7/2^+ 9/2^+ 11/2^+)$		B		I^{π} from log $t=4.6$ for ε decay from $(9/2^+)^{87}$ Nb
1911 4	(,,=,,,=,,=,=)		B		
1919 6 23			B		
1949 3			B		
2059 2 23			B		
2069.3.23			B		
2073.72.25	$(13/2^{-})$	2.97 ns 20	A		
2125 15	(10/=)	2077 110 20		E	
2201.9.3	$(17/2)^+$	<35 ps	Α	-	
2245.3 23	(1))	tee po	В		
2287 15			-	E	
2312.5 4	$(17/2^{-})$	2.74 ns 9	Α		
2354.3 7	(В		
2467.1 4	$(17/2^{-})$	11 ps 3	Α		
2598.2 23	(F	В		
2894.1	$(21/2)^+$	71 ps 7	Α		
2986.1 4	$(19/2^{-})$	I T	Α		
3053.3 23			В		
3236.8	$(19/2^{-})$	3.0 ps 6	Α		
3365.9 8	$(21/2^{-})$	<3 ps	Α		
3380.4 15	(23/2)	<0.2 ps	Α		
3447.0 23			В		
3942.7	(25/2)	0.15 ps 5	Α		
4056.8	$(25/2^+)$	-	Α		
4128.7	(25/2)	0.80 ps 20	Α		
4333.1	$(25/2^{-})$	6.9 ps 14	Α		
4530.2	(27/2)	0.44 ps 10	Α		
4618.6	$(27/2^{-})$		Α		
5054.8	$(29/2^+)$		Α		
5074.3 16	$(27/2^{-})$	0.5 ps 2	Α		
5507.6	$(29/2^+)$		Α		
5529.3	$(29/2^{-})$		Α		
5689.9	$(29/2^{-})$		Α		
5803.2	$(31/2^+)$		Α		
6212.6	$(31/2^{-})$		Α		
6234.3	$(33/2^+)$		A		
6268.8	$(31/2^{-})$		A		
6573.7	$(35/2^+)$		Α		
6840.1	$(33/2^{-})$		A		
7451.9	$(35/2^{-})$		A		
7476.8	$(37/2^+)$		A		
8777.6	$(39/2^{-})$		Α		
10091.6	$(43/2^+)$		A		

Adopted Levels, Gammas (continued)

⁸⁷Zr Levels (continued)

- [†] From least-squares fit to γ-ray energies.
 [‡] From (HI,xnγ), unless indicated otherwise. Based on excitation functions, γ(θ), and, for quadrupole transitions, RUL.
 [#] From (HI,xnγ) using Doppler shift attenuation, or recoil distance techniques.

					A	dopted Leve	els, Gamn	nas (continued	<u>d)</u>
							$\gamma(^{87}\text{Zr})$		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	${ m J}_f^\pi$	Mult. [‡]	δ	α ^{#a}	Comments
200.91	7/2+	201.02 [@] 14	100	0.0	9/2+	M1+E2	-0.35	0.0370	B(M1)(W.u.)=0.00095 4; B(E2)(W.u.)=3.25 14 α(K)=0.0324 5; α(L)=0.00387 6; α(M)=0.000673 10 α(N)=9.43×10 ⁻⁵ 14; α(O)=6.19×10 ⁻⁶ 9 δ: δ=-0.35 or -2.6 from (HI,xnγ), but α(exp) determined in isomeric decay deviates from α for δ=-2.6 by more than one standard deviation.
335.84	1/2-	134.93 [@] 15	100	200.91	7/2+	E3		2.67	B(E3)(W.u.)=0.0646 <i>13</i> α (K)=1.98 <i>3</i> ; α (L)=0.571 <i>9</i> ; α (M)=0.1020 <i>16</i> α (N)=0.01292 <i>20</i> ; α (O)=0.000314 <i>5</i> Mult.: from α (exp) deduced in isomeric decay.
470.63 523.7 589.3	(7/2+)	470.63 [@] 12 322.8 23 388.7 23	100 100 100	0.0 200.91 200.91	9/2 ⁺ 7/2 ⁺ 7/2 ⁺	(D+Q)			δ : δ =-0.04 or δ =-8 from (HI,xn γ).
801.50 817.45	(7/2)	600.9 2 801.2 2 $616.5^{\&} 2$	100° 16 42° 13 100°	200.91 0.0 200.91	7/2 ⁺ 9/2 ⁺ 7/2 ⁺	(D)			
931.53		460.9 2	100	470.63	$(7/2^+)$				
1069.42	(13/2)+	1069.4 2	100	0.0	9/2+	E2		5.76×10 ⁻⁴	B(E2)(W.u.)>0.36 α (K)=0.000508 8; α (L)=5.63×10 ⁻⁵ 8; α (M)=9.76×10 ⁻⁶ 14 α (N)=1.385×10 ⁻⁶ 20; α (O)=9.70×10 ⁻⁸ 14
1087.37	(9/2)	886.4 ^{&} 2 1087.4 2	100 17	200.91 0.0	7/2+ 9/2+				
1124.88	$(11/2^+)$	1124.9 2	100	0.0	9/2+	D+Q			
1284.0		466.5 ^{&} 23	100	817.45					
1287.5		470.0 ^x 23	100	817.45					
1505.5	(11/0+)	1304.6 ^x 23	100	200.91	$7/2^+$				
1656.9	(11/2))	569 <i>1</i> 1456 <i>1</i>	75 50	200.91	(9/2) 7/2 ⁺	(E2)		3.67×10 ⁻⁴	$\alpha(K)=0.000264 \ 4; \ \alpha(L)=2.89\times10^{-5} \ 4; \ \alpha(M)=5.01\times10^{-6} \ 7$ $\alpha(N)=7.12\times10^{-7} \ 10; \ \alpha(O)=5.05\times10^{-8} \ 8;$ $\alpha(ME)=6.84\times10^{-5} \ 11$
		1657 <i>1</i>	100	0.0	9/2+	(M1+E2)		3.68×10^{-4}	$\alpha(\text{K})=0.000210 \ 4; \ \alpha(\text{L})=2.28\times10^{-5} \ 4; \ \alpha(\text{M})=3.95\times10^{-6} \ 6 \ \alpha(\text{N})=5.63\times10^{-7} \ 9; \ \alpha(\text{O})=4.04\times10^{-8} \ 7; \ \alpha(\text{IPF})=0.000130 \ 5$
1669		381.3 ^{&} 23	100	1287.5					
1691.3	(13/2)	567	100	1124.88	$(11/2^+)$				
		621.9 2	75	1069.42	$(13/2)^+$	(D)			
1749		461.7 ^{x} 23	100	1287.5					

4

 $^{87}_{40}\mathrm{Zr}_{47}$ -4

					Adopted	l Levels, Gai	nmas (cont	tinued)	
						$\gamma(^{87}\text{Zr})$ (co	ntinued)		
E _i (level)	${ m J}^{\pi}_i$	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ	α ^{#a}	Comments
1884.4	$(7/2^+, 9/2^+, 11/2^+)$	797.0 ^{&} 23	14	1087.37	(9/2)				
		1066.8 <mark>&</mark> 3	100 11	817.45					
		1083.0 <mark>&</mark> 7	63	801.50	(7/2)				
		1295.4 <mark>&</mark> 23	5	589.3					
		1683.6 <mark>&</mark> 7	41 4	200.91	$7/2^{+}$				
		1884.5 <mark>&</mark> 7	89.8	0.0	$9/2^+$				
1911.		242.4 ^{&} 23	100	1669	- 1				
1919.6		1718.7 <mark>&</mark> 23	100	200.91	$7/2^{+}$				
1949		1360.1 ^{&} 23	100	589.3	.,=				
2059.2		1858.3 ^{&} 23	100	200.91	$7/2^{+}$				
2069.3		$1868.4^{\&}23$	100	200.91	7/2+				
2073.72	$(13/2^{-})$	416.8 2	79	1656.9	$(11/2^+)$	D			
		949.0	16	1124.88	$(11/2^+)$	[D]			
		1004.3 2	100	1069.42	$(13/2)^+$	(D)			
2201.9	(17/2)+	1132.5 2	100	1069.42	(13/2)+	E2		5.09×10 ⁻⁴	B(E2)(W.u.)>0.38 α (K)=0.000448 7; α (L)=4.95×10 ⁻⁵ 7; α (M)=8.58×10 ⁻⁶ 12 α (N)=1.217×10 ⁻⁶ 17; α (O)=8.54×10 ⁻⁸ 12; α (IPF)=1.72×10 ⁻⁶ 3
2245.3		2044.4 ^{&} 23	100	200.91	$7/2^{+}$				
2312.5	(17/2 ⁻)	110.6 <i>10</i> 238.8 2	58 100	2201.9 2073.72	$(17/2)^+$ $(13/2^-)$	(D) E2		0.0478	B(E2)(W.u.)=7.0 3 α (K)=0.0414 6; α (L)=0.00534 8; α (M)=0.000929 14 α (N)=0.0001276 19; α (O)=7.37×10 ⁻⁶ 11
2354.3		2153.4 ^{&} 7	100	200.91	$7/2^{+}$				
2467.1	$(17/2^{-})$	154.7 2	100	2312.5	(17/2 ⁻)	(M1+E2)	0.5 25	0.09 12	$\alpha(K)=0.08 \ 10; \ \alpha(L)=0.011 \ 16; \ \alpha(M)=0.002 \ 3 \ \alpha(N)=0.0003 \ 4; \ \alpha(O)=1.5\times10^{-5} \ 16$
2598.2		2397.3 <mark>&</mark> 23	100	200.91	$7/2^{+}$				
2894.1	(21/2)+	692.2	100	2201.9	(17/2)+	E2		1.67×10 ⁻³	B(E2)(W.u.)=2.19 22 α (K)=0.001469 21; α (L)=0.0001670 24; α (M)=2.90×10 ⁻⁵ 4
00061	(10/0-)	501.0	20	0.4/7.1	(15/25)				$\alpha(N)=4.09\times10^{-6}$ 6; $\alpha(O)=2.78\times10^{-7}$ 4
2986.1	$(19/2^{-})$	521.9 675 ° 2	30	2467.1	$(17/2^{-})$	(D)			
2052.2		0/3.02	100	2012.0	(11/2)	(D)			
3053.3 3236.8	(19/2 ⁻)	924.8 23	100	200.91	$(17/2^{-})$	(M1+E2)	0.50 25	7.98×10 ⁻⁴	B(M1)(W.u.)=(0.0074 21); B(E2)(W.u.)=(2.4
									$\alpha(K)=0.000705 \ 10; \ \alpha(L)=7.76\times 10^{-5} \ 12;$

S

From ENSDF

						Ado	opted Levels, (Gammas (continued)
							$\gamma(^{87}\mathrm{Zr})$	(continued)
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α ^{#a}	Comments
								$\alpha(M)=1.345\times10^{-5} 20$ $\alpha(N)=1.91\times10^{-6} 3; \alpha(O)=1.359\times10^{-7} 19$
3365.9	$(21/2^{-})$	129.7		3236.8	$(19/2^{-})$	(D+Q)		
		378.2	88	2986.1	$(19/2^{-})$	(D+Q)		
		900.0	100	2467.1	(17/2 ⁻)	(E2)	8.60×10 ⁻⁴	B(E2)(W.u.)>7.4 α (K)=0.000758 <i>11</i> ; α (L)=8.47×10 ⁻⁵ <i>12</i> ; α (M)=1.469×10 ⁻⁵ <i>21</i> α (N)=2.08×10 ⁻⁶ <i>3</i> ; α (O)=1.442×10 ⁻⁷ <i>21</i>
3380.4	(23/2)	486.4	100	2894.1	$(21/2)^+$			
3447.0		3246.0 23		200.91	7/2+			
3942.7	(25/2)	562.4	100	3380.4	(23/2)	(D)		
1056.0	$(25/2^{\pm})$	1048.5	100	2894.1	$(21/2)^+$			
4056.8	$(25/2^{+})$	1162.7	100	2894.1	$(21/2)^{+}$	(\mathbf{D})		
4120.7	(25/2)	748.4	100	2265.0	(25/2) $(21/2^{-})$	(D) (E2)	7.25×10^{-4}	$D(E2)/(W_{12}) - 4.2.0$
4555.1	(23/2)	907.2	100	5505.9	(21/2)	(E2)	7.23×10	$\begin{array}{l} \alpha(\text{K}) = 0.000640 \ 9; \ \alpha(\text{L}) = 7.12 \times 10^{-5} \ 10; \ \alpha(\text{M}) = 1.235 \times 10^{-5} \ 18 \\ \alpha(\text{N}) = 1.749 \times 10^{-6} \ 25; \ \alpha(\text{O}) = 1.218 \times 10^{-7} \ 17 \end{array}$
4530.2	(27/2)	401.8	33	4128.7	(25/2)			
		587.3	100	3942.7	(25/2)	(D)		
		1149.7		3380.4	(23/2)			
4618.6	$(27/2^{-})$	285.6	100	4333.1	$(25/2^{-})$			
5054.8	$(29/2^+)$	524.5		4530.2	(27/2)			
5054.0	(07/0-)	1112.3	100	3942.7	(25/2)			
5074.3	(27/2)	741.0	100	4333.1	(25/2)	(D)		
5507.0	$(29/2^{+})$	977.4		4550.2	(21/2)			
5520.3	$(20/2^{-})$	1576.7		4128.7 5074-3	(23/2) $(27/2^{-})$			
5529.5	(29/2)	910.8		4618.6	$(27/2^{-})$			
		1196.1		4333.1	$(27/2^{-})$			
5689.9	$(29/2^{-})$	615.6	100	5074.3	$(27/2^{-})$			
5803.2	$(31/2^+)$	295.4		5507.6	$(29/2^+)$			
		1273.0		4530.2	(27/2)			
6212.6	$(31/2^{-})$	683.4	100	5529.3	$(29/2^{-})$			
6234.3	$(33/2^+)$	431.0		5803.2	$(31/2^+)$			
		1179.5		5054.8	$(29/2^+)$			
6268.8	$(31/2^{-})$	578.8	100	5689.9	$(29/2^{-})$			
6573.7	$(35/2^+)$	339.3	100	6234.3	$(33/2^+)$			
6840.1	$(33/2^{-})$	627.5	100	6212.6	$(31/2^{-})$			
7451.9	$(35/2^{-})$	611.9		6840.1	$(33/2^{-})$			
71760	(27/2+)	1183.0		6268.8	$(31/2^{-})$			
/4/0.8	$(31/2^{+})$	903.0		6224.2	$(33/2^{+})$			
8777 6	$(39/2^{-})$	1325 7	100	0234.3 7451 0	(35/2) $(35/2^{-})$			
10091.6	$(37/2^{+})$ $(43/2^{+})$	1314.0	100	8777 6	$(39/2^{-})$			
10071.0	(75/2)	1317.0	100	0777.0	(3)[2])			

6

Adopted Levels, Gammas (continued)

 $\gamma(^{87}\text{Zr})$ (continued)

calculation.

- † From (HI,xn γ), unless indicated otherwise.
- [‡] From (HI,xnγ) and adopted parities, unless indicated otherwise. [#] Value is given only where needed for B(E2)(W.u.) or B(M1)(W.u.)
- ^(e) Weighted average from (HI,xn γ) and $\varepsilon + \beta^+$ decay (2.6 m). [&] From $\varepsilon + \beta^+$ decay (2.6 m).
- ^{*a*} Additional information 1.

-

 $^{87}_{40}{
m Zr}_{47}$