		Type	Auf	History thor Citation Literature Cutoff Date
	Ē	Type Full Evaluation	T D Johnson and	$\frac{W D Kulp(a)}{MDS 129 1 (2015)} = \frac{27 Jul 2015}{27 Jul 2015}$
$Q(\beta^{-}) = -3672$ $Q(\beta^{-}n) = -1312$ For model calc Shape evolutio Band structure	4; S(n)= 21 4 Q(ɛµ culation co n in this analysis	11806 14; $S(p)$ p)=-7560.3 16 of level energie region discussed in 2012Sh36.	=5784.1 <i>11</i> ; $Q(\alpha)$ =- s and moments, see ed in 2011Ro08.	-6373 <i>3</i> 2012Wa38 1976Kr12.
				⁸⁷ Y Levels
			C	Cross Reference (XREF) Flags
		$ \begin{array}{ccc} A & {}^{85}\text{Rb}(\\ B & {}^{84}\text{Sr}(\\ C & {}^{86}\text{Sr}(\\ D & {}^{86}\text{Sr}(\\ E & {}^{86}\text{Sr}(\\ \end{array}) $	$(\alpha, 2n\gamma), {}^{74}\text{Ge}({}^{18}\text{O}, 4n)$ ($\alpha, p)$ ($\alpha, \gamma)$ ($\alpha, $	$ \begin{array}{cccc} {} {} {} {} {} {} {} {} {} {} {} {} {}$
E(level) [†]	J^{π}	T _{1/2} ‡	XREF	Comments
0.0 ^b 380.82 ^d 7	1/2 ⁻ 9/2 ⁺	79.8 h <i>3</i> 13.37 h <i>3</i>	ABC EFGHIJ LM	%ε+%β ⁺ =100 μ=-0.19 2 μ: from 2007Ch07 using laser spectroscopy. Δ <r<sup>2>=+0.057 fm² relative to ⁸⁹Y (2007Ch07). J^π: J from atomic-beam resonance (1975Ru06) and π from L=1 in (³He,d). T_{1/2}: weighted average of 79.6 h 2 (1984Pr01), and 80.3 h 3 (1969Zo04); both from ⁸⁷Y ε decay. %IT=98.43 11; %ε+%β⁺=1.57 11 μ=6.24 2 Q=-0.50 6 %IT and %EC+%B calculated from measured I_{β+}=0.75 5 and theoretical ε/β+ ratio for decay to ⁸⁷Sr. J^π: J from atomic-beam resonance (1975Ru06) and π from L=4 in (³He,d). T_{1/2}: from 1984Pr01 by γ(t); others: 12.5 2 (1967Mi13) and 13.2 2 (1969Zo04). All values are from ⁸⁷Y ε decay. μ: from 2007Ch07 using laser spectroscopy other: 6.05 7 (1991Hi04) by nuclear magnetic resonance on oriented nuclei and relative to 6.23 7 for ^{89m}Y, 6.10 +32-15 (1978Ma02) by nuclear orientation. Q: from 2007Ch07 using laser spectroscopy. Δ<r<sup>2>=+0.032 fm² relative to the ground state (2007Ch07).</r<sup></r<sup>
793.73 ^b 8 982.89 10 1152.71 11 1182.00 9 1203.01 9	5/2 ⁻ 3/2 ⁻ 5/2 ⁺ 3/2 ⁻ 5/2 ⁻	≤10 ns	ABC E GHIJKLM BC E IJK M BC E G J M C IJ M BC HIJK M	J ^{π} : L=3 in (³ He,d), Q γ to J ^{π} =1/2 ⁻ level. J ^{π} : L=1 in (³ He,d) and L=2 in (p,t) from J ^{π} =1/2 ⁻ . J ^{π} : L=2 in (³ He,d) and γ to J ^{π} =9/2 ⁺ level. XREF: I(1177). J ^{π} : L=2 in (p,t) from J ^{π} =1/2 ⁻ and J ^{π} =5/2 ⁻ is ruled out in (p, α). J ^{π} : L=2 in (p,t) from J ^{π} =1/2 ⁻ and J ^{π} =(3/2 ⁻) is ruled out in (p, α).
1321 8 1404.47 <i>12</i>	13/2+	≤10 ns	B AbeHJLM	XREF: b(1403)e(1400). J^{π} : band structure, angular distribution and analyzing powers in (pol p, α).

⁸⁷Y Levels (continued)

E(level) [†]	J^{π}	$T_{1/2}^{\ddagger}$	XREF	Comments				
1405.3 4	(7/2 ⁺ ,9/2 ⁺) [@]	≤10 ns	bC e G	XREF: $b(1403)e(1400)$. J ^{π} : From intensity arguments in (p, γ). It is unlikely to populate the 1404.47 level at 13/2 ⁺ in this reaction Also as this level is populated by feeding from a 7/2 ⁻ at 1979 keV, there is very little liklihood that this level is the same as the 13/2 ⁺ level at 1404.47.				
1504 8 1590.92 <i>14</i>	11/2+	≤10 ns	B ACGHLM	J ^{π} : From excitation in (p,n γ) J ^{π} is limited to 9/2 ⁻ ,11/2 ⁺ , or 13/2. In addition $\gamma(\theta)$ for the 1210 γ transition to the 9/2 ⁺ level at 380 is consistent only with I=11/2				
1608.31 12	7/2+,9/2+		BCEG M	XREF: B(1618). I_{i} : $I_{i} = A$ in $({}^{3}$ He d) for 1605 A level				
1609 5	3/2-		IJ	J^{π} : L=2 in (p,t) from $J^{\pi}=1/2^{-}$ and $5/2^{-}$ ruled out in analyzing power measurements in (p, α) (pol p α)				
1623.50 <i>21</i>	(5/2,7/2)		AC HJ	J^{π} : from γ angular distribution in (p,2n γ).				
1629.94 <i>13</i> 1641 5	$(1/2^{-}, 3/2^{-})^{\textcircled{0}}$ $1/2^{-}$		C LM I	J^{π} : other: 7/2 ⁻ from (p,n γ). J^{π} : L=0 in (p,t) from 1/2 ⁻ level.				
1704.7 4	210-510-		С ЈМ	J^{π} : (p,n γ) resonance data allows $3/2^+$ or $5/2^+$, while excitation data rules out $5/2^+$. (p, α),(pol p, α) data rule out $5/2^-$ and $3/2^+$.				
1719 4	$\frac{3}{2}, \frac{3}{2}$		L RC I M	J^{-1} : L=2 in (p,t) from 1/2. I^{π_1} : $5/2^{-1}$ from (p,py) and $5/2^+$ from (p,q) (pol, p,q)				
1750.08 II 1768.2 ^b 5	$(9/2^{-})$		L JC J II	J^{π} : from γ to (5/2 ⁻) level and band structure.				
1801.64 <i>15</i> 1814 <i>5</i>	5/2 ⁻ 3/2 ⁻ .5/2 ⁻		СЈМ	J^{π} : From $(p,\alpha), (\text{pol } p,\alpha),$ J^{π} : L=2 in (p,t) from $1/2^{-}$.				
1849 <i>3</i>	1/2-		BC E IJ	E(level): average of 1851 8 from (α ,p), 1848 4 from (³ He,d), 1857 5 from (p,t) and 1846 3 from (p, α); other: 1846.7 in (p, γ).				
1979.95 <i>12</i>	7/2-		C IJ M	X = 1 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -				
2008.8 3	(7/2)		B HJLM	XREF: B(2012). J^{π} : from $\gamma(\theta)$ (p,2n γ). However, (p, α),(pol p, α) data indicate 11/2 ⁺ . In (p,n γ), the authors give 9/2 ⁻ ,11/2 ⁻ from excitation, but decay to $5/2^{-}$ malors the 11/2 ⁻ assignment very unlikely.				
2021 5	(7/2 ⁻ ,9/2 ⁻)		BI	XREF: B(2012). $I_{a} = 1/2$ assignment very univery.				
2038.05 11	$(11/2^+)$	$\leq 10 \text{ ns}$	A LM	J^{π} : From a $\Delta J = \pm 1$ D+Q transition to $13/2^{\pm}$ in $(\alpha, 2n\gamma)$, assumed to be M1+E2 and a $\omega \pm 0.02^{\pm}$				
2072.7 10	(3/2,5/2,7/2)		С	J^{π} : γ' 's to $5/2^{-}$ and $(5/2)^{+}$ levels.				
2073.31 23	$(7/2^+, 9/2^+)$		G M	J^{π} : from γ excitation function in (p,n γ).				
2085.0 5	(3/2)		DC E	J^{π} : L=1 in (³ He.d) and γ to $J^{\pi} = 5/2^+$ 1153 level.				
2095 5	3/2-,5/2-		BI	XREF: B(2103). I^{π} : L=2 from 1/2 ⁻ in (p.t).				
2112.3 4	5/2+		C J M	J^{π} : from γ' s to $3/2^{-}$ and $(7/2^{+}, 9/2^{+})$ and from (p, α) .				
2122 5 2154.60 <i>18</i>	$5/2^+,7/2^+$ $(9/2^-)$		I J M	J^{n} : L=3 in (p,t) from $1/2^{-}$. J^{π} : allowed values from angular distribution and analyzing powers from (p,q) are $(9/2^{-}, 11/2^{+})$ parrowed by q to $5/2^{-}$.				
2158.9 [#] 10 2165 5	7/2,9/2-		C I	E(level): from (p,t). J^{π} : L=4 in (p,t) from $J^{\pi}=1/2^{-}$.				
2186.0 <i>3</i> 2202 <i>5</i> 2202.17 <i>17</i>	7/2 ⁻ & 7/2 ⁻ ,9/2 ⁻ 7/2 ⁺ ,9/2 ⁺		CJM I BEGM	J ^{π} : L=4 in (p,t) from 1/2 ⁻ . J ^{π} : L=4 in (³ He,d). If the 1410 γ to 5/2 ⁻ is from this level, J ^{π} is 7/2 ⁺ ; the alternative is that the 7/2 ⁻ ,9/2 ⁻ 2202 level is also populated in the ⁸⁷ Zr ε + β + decay.				

⁸⁷Y Levels (continued)

E(level) [†]	J^{π}	T _{1/2} ‡	Х	REF	Comments
2209 <i>3</i> 2210.6 [#] 8 2216 <i>5</i> 2241.6 <i>7</i>	$3/2^{-\&}$ (1/2) [@] 9/2 ⁺ ,11/2 ⁺ (7/2,9/2 ⁻)		С	J I G	J^{π} : L=5 in (p,t) from 1/2 ⁻ . J^{π} : log ft=7.4, log f ^{4u} t=8.3 from J^{π} =(9/2) ⁺ and γ to 1609
2244.8 [#] 6 2249 3 2256 5 2276 2	9/2 ^{-&} 3/2 ⁻ ,5/2 ⁻		С	J I	J^{π} : L=2 in (p,t) from 1/2 ⁻ .
2270 5 2277.53 <i>17</i> 2279.4	$(9/2 ~ \& 1/2^{-})^{-1}$ $(7/2^{-})$		BC E C	J M	J^{π} : from L=3 in (³ He,d) and γ to 9/2 ⁺ .
2292.3 <i>10</i> 2302.61 <i>15</i>	5/2 ⁺ ,7/2 ⁺ 13/2 ⁺		C D	I J M	J^{π} : L=3 in (p,t) from $J^{\pi}=1/2^{-}$.
2314 <i>5</i> 2344.61 <i>17</i>	$(5/2^+, 7/2^+)$			I M	J^{π} : L=(3) in (p,t) from 1/2 ⁻ .
2353.55 <i>21</i> 2365 <i>3</i>	(7/2,9/2,11/2) 7/2 ⁺		С	M J	J^{π} : from (p,n γ) excitation function analysis. J^{π} : $J^{\pi}=15/2^{-} + 7/2^{+}$ is assigned from $\sigma(\theta)$ and analyzing power in (p, α)(pol p, α) for the 2365 236767 doublet. $J^{\pi}=15/2^{-}$ is established for the 2367 level giving $J^{\pi}=7/2^{+}$ for the 2365 level.
2366.92 15	15/2-	≤10 ns	Α	HIJ LM	XREF: I(2374). J^{π} : L=8 in (p,t) from $1/2^{-}$ and dipole γ to $13/2^{+}$.
2400.0 <i>3</i> 2409 <i>2</i>	3/2+		CE	M IJ	J^{π} : γ to $9/2^{4}$, but no further restrictions. E(level): average of 2407 4 from (³ He,d), 2413 5 from (p,t), and 2408 3; other: 2408.3 from (p, γ). I^{π} : L = 2 in (³ He d) and α to $I^{\pi} = 1/2^{-1}$
2428.09 ^d 15	17/2+	≤10 ns	Α	H L	J^{π} : From stretched quadrupole presumed E2 to 13/2 ⁺ level
2446 2	(5/2)+		С	I	established by angular correlations in $(\alpha, 2n\gamma)$. E(level): Average of 2445 2 from (p,γ) and 2451 5 from (p,t) . J^{π} : L=3 in (p,t) from $J^{\pi}=1/2^{-}$ and from comparison of primary γ strength in (p,γ) with the γ strength to the 381 level it follows $I^{\pi}=5/2^{+}$
2449 3	9/2 ^{-&}			J	
2479.07 ^c 15	13/2-		A	HI L	XREF: I(2486). J^{π} : L=6 in (p,t) from $J^{\pi}=1/2^{-}$. $\Delta J=\pm 1$ to $11/2^{+}$.
2502 2 2532 2	$(5/2^+)^{(a)}$ 11/2 ^{-&}		С	J	
2532 2 2552 2	9/2+		C C	GI	XREF: I(2544).
2563.7 7 2572 2 2599 3	$9/2,11/2^+$ $(3/2^-)^{@}$ $9/2^{-\&}$		C C	G IJ	J^{*} : L=5 in (p,t) from 1/2 and γ to 5/2 ⁺ . J^{π} : L=5 in (p,t) from 1/2 ⁻ .
2602.3 11	$(7/2)^+$			GI	J^{π} : L=3 in (p,t) from 1/2 ⁻ and log <i>ft</i> =6.8 and log <i>f</i> ^{1u} <i>t</i> =7.4 from (9/2) ⁺ .
2616 2 2648.91 ^c 15 2661 3	$(3/2^{-})^{@}$ $(15/2^{-})$ $7/2^{+}$ $(5/2)^{@}$		C A	L J	J^{π} : from $\Delta = 1 \gamma$ to $13/2^{-}$ and band structure.
2668 2676.06 <i>15</i>	(5/2) ° 17/2 ⁻	0.25 ns 10	C A	HI L	J ^{π} : L=8 in (p,t) from 1/2 ⁻ and γ angular distribution in
2682 <i>3</i>	11/2 ⁺ &			J	(0,247).

⁸⁷Y Levels (continued)

E(level) [†]	J^{π}	T _{1/2} ‡	XREF	Comments
2730 4	5/2-,7/2-		E	J^{π} : L=3 in (³ He,d).
2737 5	$9/2^+, 11/2^+$		I	J^{π} : L=5 in (p,t) from $1/2^{-}$.
2747 3	3/2+&		J	
2762	(3/2 ⁻) [@]		С	
2801 3	$(3/2^+ \& 11/2^+)^{\&}$		J	
2808 5	9/2+,11/2+		I	J^{n} : L=5 in (p,t) from $1/2^{-}$.
2808.4° 8	(13/2 ⁻)		L	J^{n} : from γ to $(9/2^{-})$ level and band structure.
2827.20 ^{<i>a</i>} 18	$21/2^+$	0.53 ns <i>3</i>	A H L	J^{π} : from E2 γ to 17/2 ⁺ and band structure.
2828 5	(3/2, 5/2)		1	$J^{*}: L=(2) \text{ in } (p,t) \text{ from } 1/2$.
2831 3	$9/2 = 13/2^{-1}$		Т	I^{π} : I -6 in (n t) from $1/2^{-1}$
2901.5	$3/2^{-}.5/2^{-}$		IJ	J^{π} : L=2 in (p,t) from 1/2 ⁻ .
2907 4	$3/2^+, 5/2^+$		CE	J^{π} : L=2 in (³ He,d).
2960 3	$(5/2^+)^{\&}$		J	
2961.47 ^C 18	17/2-		A I L	J ^{π} : L=8 in (p,t) from 1/2 ⁻ ; from γ angular distribution in
				$(\alpha, 2n\gamma)$, it follows J=17/2.
2986.9 <i>3</i>	$(19/2^+)$	<49 ps	A L	J^{π} : from DCO of γ to 21/2 ⁺ level. Assigned as 23/2 ⁺ in
				previous evaluation (2009He09), but the assignment of $(19/2^+)$ is still consistent with angular distribution and
				DCO measurements, and fits better with systematics of
				yrast states of N=48 isotones (see 1998Sc22 for more
				detailed discussion).
2995.6 3	(17/2)		A	J^{π} : from angular distributions in (α ,2n γ).
2996 2	5/2+		CE IJ	XREF: $C(2995)I(2997)J(2998)$.
2006 1 11	(2)		C	J [*] : L=2 in (⁶ He,d) and (5/2 ⁺) in (p, α). I ^{π} : log ft=6.6 logf ¹⁰ t=6.8 from (0/2) ⁺
3038 5	(7/2, 9/2, 11/2) $9/2^+ 11/2^+$		G T	J 10g $j_{l}=0.0, 10g j_{l}=0.8 \text{ from } (9/2)$. $I^{\pi}: L=5 \text{ in (n t) from } 1/2^{-1}$
3043 4	$3/2^+, 5/2^+$		Е	J^{π} : L=2 in (³ He.d).
3057 5	$(5/2^+, 7/2^+)$		I	J^{π} : L=(3) in (p,t) from 1/2 ⁻ .
3090 4	3/2+,5/2+		E	J^{π} : L=2 in (³ He,d).
3093 5	$9/2^+,11/2^+$	10	I	J^{π} : L=5 in (p,t) from 1/2 ⁻ .
3094.4 4	(21/2)	<49 ps	Α	J ^{α} : from from γ angular distribution in (α ,2n γ). Assigned
				23/2 in previous evaluation (2002He09) and changed due to having re-assigned the daughter state to $(19/2^+)$
3120 3	$5/2^+, 7/2^+$		ΕI	E(level): average of 3120 4 from (³ He.d) and 3121 5 from
				(p,t).
				J^{π} : L=3 in (p,t) from 1/2 ⁻ .
3120 10	$(13/2^{-})^{\&}$		J	
3181 5	$(13/2^+, 15/2^+)$		I	J^{π} : L=(7) in (p,t) from 1/2 ⁻ .
3195 4	$(1/2^+)$		E	J^{n} : L=(0) in (³ He,d).
3245 5	$9/2^+, 11/2^+$ $9/2^+, 11/2^+$			$J^*: L=5 \text{ in } (p,t) \text{ from } J^*=1/2$.
5202.9 15	9/2 ,11/2		91	J^{π} : L=5 in (p,t) from $J^{\pi}=1/2^{-}$.
3308 6	$3/2^+, 5/2^+$		E J	E(level): average of 3306 4 from (³ He,d) and 3324 10 from
				(p,α).
				J^{π} : L=2 in (³ He,d).
3351 [#] 2	3/2+,5/2+		CE	J^{π} : L=2 in (³ He,d).
3402.4 [°] 3	(19/2 ⁻)		A L	J^{π} : from γ to $(17/2^{-})$ and band structure.
3405.2 11	$3/2^+, 5/2^+$		EG	J^{π} : L=2 in (³ He,d).
3440.3 <i>3</i>	(19/2)		A JL	J [*] : from (D+Q) γ to 1//2 and band placment.
3500	$(11/2^+)^{\infty}$	0.002 23	J	
3552.95 ^a 19	$(23/2^{+})$	0.083 ps 21	A L	J [*] : from D γ to 21/2 ⁺ and band placement.

⁸⁷Y Levels (continued)

E(level) [†]	Jπ	T _{1/2} ‡	Σ	KREF	Comments
3595.2 4	(21/2,23/2,25/2+)		A		J^{π} : from γ to the 21/2 ⁺ level and no γ to the 2428 17/2 ⁺
3595.3 5	(21/2+)	0.5 ns 2	A		J^{π} : from from γ angular distribution in (α ,2n γ). Assigned 25/2 in earlier evaluation (2009He09) and changed due to having re-assigned the daughter state to (19/2 ⁺).
3640 20				J	
3730	$(7/2^{-})^{\&}$			1	
3766.6 ^C 4	$(21/2^{-})$		A	L	J^{π} : (E2) γ to (17/2 ⁻) and band structure.
3840	$(11/2^{-})^{\&}$			1	
3908.8 4	(23/2 ⁻)			L	J ^{π} : from (D+Q) γ to (21/2 ⁻) level and γ to (19/2 ⁻). and feeding from a Δ J=1 transition from a (25/2 ⁻) level itself fed from a (27/2 ⁻) bandhead level.
4039.40 ^d 21	$(25/2^+)$	0.17 ps 4	Α	L	J^{π} : band structure.
4214.1 3	(27/2)		Α		J^{π} : from D γ to (25/2) level and band placment.
4555.0 4	$(23/2^+)$			L	J^{π} : from (E2) γ to (19/2 ⁺) level $\Delta J=1 \gamma$ to (21/2 ⁺) level.
4564.1 <i>3</i>	$(23/2^{-})$			L	J^{π} : from stretched (E2) γ to (19/2 ⁻).
4609.66 19	25/2+	0.12 ps 4		L	J^{n} : from E2 γ to 21/2 ⁺ .
5228.2 3	$(25/2^{-})$			L	J^{n} : γ from 29/2 ⁽⁻⁾ and $\Delta J=1 \gamma$ to 23/2 ⁺ .
5288.48 ^{<i>a</i>} 21	$(27/2^+)$	0.10 ps 3		L	J^{π} : from γ to $(25/2^+)$ level, γ to $(23/2^+)$, and $\gamma \Delta J=1$ feeding from $(29/2^-)$.
5319.7 4	$(25/2^{-})$			L	J^{π} : from (E2) γ to (21/2 ⁻) level.
5495.2 4	$(25/2^+)$			L	J^{π} : from $\Delta J=1 \gamma$ to (23/2 ⁺) level and band structure.
5759.59 ^e 24	(27/2 ⁻)	>2.1 ps		L	J^{π} : from $\Delta J = 1 \gamma' s$ to 25/2 ⁺ and (25/2 ⁻) levels, γ to (23/2 ⁻).
5827.1 <i>3</i>	$(27/2^+)$			L	J^{π} : From $\Delta J = 1 \gamma$ feeding from (29/2 ⁻) and (M1+E2) γ to 25/2 ⁺ .
5934.50 ^e 24	(29/2 ⁻)	1.8 ps 4		L	J^{π} : from M1 γ to (27/2 ⁻) level, γ to (25/2 ⁻), and band structure.
6535.5 ^e 3	$(31/2^{-})$	0.18 ps 4		L	J^{π} : from likely $\Delta J=1 \gamma$ to (29/2 ⁻) level and band structure.
7016.6 ^e 3	(33/2 ⁻)	0.11 ps 3		L	J^{π} : from likely M1 γ to (31/2 ⁻) level.
10537 11	$5/2^{+a}$	23 keV 1	D	K	$\Gamma_{\rm p} = 3.44 \text{ keV } 20$
10923 11	$1/2^{+a}$	40 keV 2	D		$\Gamma_p = 14.0 \text{ keV } 10$
11468 15	$3/2^{+a}$	21 keV 2	D		$\Gamma_{\rm p}$ =1.6 keV 2
11739 11	$1/2^{+a}$	33 keV 2	D		$\Gamma_{\rm p}=9.5 \text{ keV } 5$
11900 11	$1/2^{+a}$	34 keV 2	D		$\Gamma_p = 11.5 \text{ keV } 6$
11966 23	$(3/2)^{+\alpha}$	25 keV 8	D		$\Gamma_{p} = 1.4 \text{ keV } 10$
11966 23	$(5/2^+)^{\alpha}$	$25 \text{ KeV } \delta$	D		$\Gamma_p = 1.0 \text{ KeV } \delta$ $\Gamma_p = 5.2 \text{ keV } \delta$
125/1 11	$\frac{5}{2^{+a}}$	24 keV I	ע		$\Gamma_{p} = 3.2 \text{ KeV} - 5$
12001 14	$\frac{1/2}{3/2+a}$	++ KC V +	ע ח		1 p-11.7 KC V /
13076 15	$5/2^{+a}$		ם ת		
	-,-		-		

[†] From least-squares fit to γ -ray energies for levels connected by γ' s; for other levels from weighted average of all available reaction values, unless otherwise noted. Where uncertainties on E γ is missing, evaluators assume 1.0 keV.

[‡] From ⁸⁵Rb(α ,2n γ), ⁷⁴Ge(¹⁸O,4np γ), unless indicated otherwise.

[#] From (p, γ), only determined by primary γ spectra.

[@] From comparison of primary γ strength with the γ strength to the 381 level in (p,γ) .

[&] From (p,α) from angular distribution and analyzing powers .

^a From analyzing power and shape of the resonance curve in (p,p') IAR.

^b Band(A): $1/2^{-}$ ground-state band.

⁸⁷Y Levels (continued)

- ^{*c*} Band(B): $\Delta J=1$ band based on $13/2^-$. ^{*d*} Band(C): yrast states, positive parity. ^{*e*} Band(D): Other positive parity yrast states.

						Adopted L	evels, Gan	nmas (continued	<u>)</u>
							γ ⁽⁸⁷)	()	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	E_f	J_f^{π}	Mult. ^{‡#}	<i>δ</i> #	$\alpha^{\ddagger a}$	Comments
380.82	9/2+	380.79 7	100	0.0	1/2-	M4		0.256	B(M4)(W.u.)=2.705 <i>12</i> α (K)=0.217 <i>3</i> ; α (L)=0.0329 <i>5</i> ; α (M)=0.00575 <i>8</i> α (N)=0.000753 <i>11</i> ; α (O)=4.46×10 ⁻⁵ <i>7</i> E. Mult : from IT decay
793.73	5/2-	793.7 1	100	0.0	1/2-	(E2)		1.09×10 ⁻³ 2	B(E2)(W.u.)>0.0078 α(K)=0.000963 14; α(L)=0.0001073 15; α(M)=1.83×10 ⁻⁵ 3 α(N)=2.45×10 ⁻⁶ 4; α(O)=1.671×10 ⁻⁷ 24 Mult.: α(K)(exp)=1.016×10 ⁻³ 97 gives mult=M1,E2. Placement in level scheme requires Δ J=2. See dataset from (n pr)
982.89	3/2-	982.9 <i>1</i>	100	0.0	1/2-	M1,E2			Mult.: $\alpha(K)(exp)=0.55\times10^{-3}$ 13 gives mult=M1,E2. See
1152.71	5/2+	771.9 <i>1</i>	100	380.82	9/2+	E2			Mult.: $\alpha(K)(\exp)=1.19\times10^{-3}$ 33 gives mult=M1,E2. Placement in level scheme requires $\Delta J=2$. See dataset from (p py)
1182.00 1203.01	3/2 ⁻ 5/2 ⁻	1182.1 <i>1</i> 409.2 <i>1</i> 1203.0 <i>2</i>	100 9.8 <i>4</i> 100.0 <i>16</i>	0.0 793.73 0.0	1/2 ⁻ 5/2 ⁻ 1/2 ⁻				nom (p,ny).
1404.47	13/2+	1024.0 3	100	380.82	9/2+	E2		5.91×10 ⁻⁴	B(E2)(W.u.)>0.0022 α (K)=0.000522 8; α (L)=5.74×10 ⁻⁵ 8; α (M)=9.79×10 ⁻⁶ 14 α (N)=1.315×10 ⁻⁶ 19; α (O)=9.09×10 ⁻⁸ 13 α (K)exp: =0.53×10 ⁻³ 13 from (p,nγ). Mult.: M1,E2 from α (K)exp, but placement in level scheme requires ΔJ=2. B(E2)(W.u.) calculated assuming Q is E2.
1405.3 1590.92	(7/2 ⁺ ,9/2 ⁺) 11/2 ⁺	1024.0 <i>10</i> 1210.0 <i>2</i>	100 100	380.82 380.82	9/2 ⁺ 9/2 ⁺	D+Q	+1.0 4		B(M1)(W.u.)>3.7×10 ⁻⁷ ; B(E2)(W.u.)>0.00029
									B(M1)(W.u.) and B(E2)(W.u.) calculated assuming D+Q is M1+E2.
1608.31 1623.50	7/2 ⁺ ,9/2 ⁺ (5/2,7/2)	1227.5 <i>1</i> 444.0 [@] 643.0 [@] 829.5 2	100 16 [@] 100 [@] 100	380.82 1182.00 982.89 793.73	9/2 ⁺ 3/2 ⁻ 3/2 ⁻ 5/2 ⁻				
1629.94 1704.7	(1/2 ⁻ ,3/2 ⁻)	836.2 ^{&} 1 501.9 [@] 523.3 7 910.5 [@]	100 ^{&} 18 [@] 75 <i>13</i> 94 [@]	793.73 1203.01 1182.00 793.73	5/2 ⁻ 5/2 ⁻ 3/2 ⁻ 5/2 ⁻	M1,E2			α (K)exp: =1.10×10 ⁻³ 20 from (p,n γ). I $_{\gamma}$: I γ =91 in (p, γ).
1756.08	5/2	1704.5 <i>4</i> 574.1 <i>1</i> 962.7 2	100 <i>18</i> 100 <i>4</i> ≈36	0.0 1182.00 793.73	$\frac{1}{2^{-}}$ $\frac{3}{2^{-}}$ $\frac{5}{2^{-}}$				
1768.2	(9/2-)	974.5 5	100	793.73	5/2-				

					Adopt	ed Levels, C	Gammas (co	ontinued)	
						$\gamma(^{87}\mathrm{Y})$ (continued)		
E _i (level)	J_i^π	${\rm E_{\gamma}}^{\dagger}$	I_{γ}	\mathbf{E}_{f}	J_f^π	Mult. ^{‡#}	δ [#]	$\alpha^{\ddagger a}$	Comments
1801.64	5/2-	598.1 [@] 619.8 2 818.5 [@] 1801.5 2	16 [@] 20 4 8 [@] 100 4	1203.01 1182.00 982.89 0.0	5/2 ⁻ 3/2 ⁻ 3/2 ⁻ 1/2 ⁻				I _{γ} : I γ =35 in (p, γ).
1849	1/2-	665.2 [@] 864.1 [@]	67 [@] 100 [@]	1182.00 982.89	3/2 ⁻ 3/2 ⁻				
1979.95	7/2-	574.0 [@]	123 [@]	1405.3	$(7/2^+, 9/2^+)$				I_{γ} : from (p,γ); not reported in (p,nγ), so placement may be questionable.
2000.0		776.9 <i>1</i> 827.3 <i>2</i> 1186.5 <i>3</i>	100 4 21 3 31 5	1203.01 1152.71 793.73	5/2 ⁻ 5/2 ⁺ 5/2 ⁻				
2008.8 2038.05	(7/2) (11/2 ⁺)	1215.1 <i>3</i> 633.6 <i>1</i>	100 100.0 <i>16</i>	193.73 1404.47	5/2 13/2+	M1+E2	+0.37 7	0.00171 <i>3</i>	B(M1)(W.u.)>3.6×10 ⁻⁶ ; B(E2)(W.u.)>0.00098 α (K)=0.001514 24; α (L)=0.000167 3; α (M)=2.85×10 ⁻⁵ 5 α (N)=3.83×10 ⁻⁶ 7; α (O)=2.67×10 ⁻⁷ 4 α (K)exp: =1.77×10 ⁻³ 45, from (p,n γ). Mult.: Using δ from 1980Fi06 with the α (K)exp from 1980Ta13 and comparing with calculations from BrICC yields the M1+E2 multipolarity.
		1657.2 <i>1</i>	99.3 21	380.82	9/2+	[M1,E2]		3.48×10 ⁻⁴ 6	B(M1)(W.u.)>1.5×10 ⁻⁷ ; B(E2)(W.u.)>3.9×10 ⁻⁶ α (K)=0.000194 3; α (L)=2.09×10 ⁻⁵ 3; α (M)=3.56×10 ⁻⁶ 5 α (N)=4.80×10 ⁻⁷ 7; α (O)=3.40×10 ⁻⁸ 5; α (IPF)=0.000130 5 I _{γ} : from (p,n γ); other: 49 4 from (⁸⁰ Se(¹¹ B,4n γ)).
2072.7 2073.31	(3/2,5/2,7/2) (7/2 ⁺ ,9/2 ⁺)	1279.0 [@] 920.6 2	100@	793.73 1152.71	5/2 ⁻ 5/2 ⁺				I _γ : Not well determined. (p,nγ), In ⁸⁷ Zr $β^+$ there is only a weak 921γ, with the spectrum suggesting roughly half that of the 1692γ, whereas (p,nγ) shows the 920γ intensity as slightly less than the 1692γ. In (p,γ) the 920γ intensity is a little over 4 times as high as that of the 1692γ, suggesting, for this case at least, a doublet was observed. In $β^+$, the 1279γ shown dexciting the 2072.7 was not observed, indicating another level close to this energy, as shown here.

 ∞

	Adopted Levels, Gammas (continued)												
						$\gamma(^{87}\text{Y})$ (c	ontinued)						
E_i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}	\mathbf{E}_{f}	J_f^π	Mult. ^{‡#}	Comments						
2083.0	(3/2)-	880.0 [@] 901.3 [@] 930.0 [@] b 1100.1 [@] 2082.8 [@]	31 [@] 97 [@] 31 ^{@b} 53 [@] 100 [@]	1203.01 1182.00 1152.71 982.89 0.0	5/2 ⁻ 3/2 ⁻ 5/2 ⁺ 3/2 ⁻ 1/2 ⁻								
2112.3	5/2+	706.3 [@] 930.0 ^{@b} 959.7 4	55 [@] 27 ^{@b} 100	1405.3 1182.00 1152.71	$(7/2^+, 9/2^+)$ $3/2^-$ $5/2^+$								
2154.60	(9/2 ⁻)	951.7 2 1773.5 3	38.8 <i>14</i> 100 <i>4</i>	1203.01 380.82	$5/2^{-}$ $5/2^{-}$ $9/2^{+}$								
2158.9	7/2-	2158.9	100	0.0	$\frac{1}{2}$								
2202.17	7/2 ⁺ ,9/2 ⁺	611.2 2 797.0 7 1048 <i>I</i> 1410.0 <i>I</i> 5 1821.4 2	30 3 100 5 33 17 17 8 29.8 20	1590.92 1405.3 1152.71 793.73 380.82	5/2 $11/2^+$ $(7/2^+, 9/2^+)$ $5/2^+$ $5/2^-$ $9/2^+$		I _{γ} : from (p,n γ); other: 67 17 from ⁸⁷ Zr β + decay. I _{γ} : 100 34 from β^+ . I _{γ} : From β^+ , as not seen in (p,n γ). I _{γ} : From β^+ , as not seen in (p,n γ). I _{γ} : from (p,n γ); other: 50 17 from ⁸⁷ Zr β + decay.						
2210.6	(1/2)	409.2 [@]	47 [@]	1801.64	5/2-		-, (F)-, ,						
2241.6	(7/2,9/2 ⁻)	633 <i>I</i> 836 <i>I</i> 1862.0 <i>I</i> 5	100 <i>50</i> 100 <i>50</i> 50 <i>25</i>	0.0 1608.31 1405.3 380.82	1/2 $7/2^+,9/2^+$ $(7/2^+,9/2^+)$ $9/2^+$								
2244.8		619.7 [@] 1042.6 [@]	77 [@] 100 [@] 21 [@]	1623.50 1203.01 703.73	(5/2,7/2) 5/2 ⁻								
2277.53	7/2-	1431.9 ² 1075.3 <i>4</i> 1483.8 2 1896.2 <i>3</i>	80 9 100 14 50 11	1203.01 793.73 380.82	5/2 ⁻ 5/2 ⁻ 5/2 ⁻ 9/2 ⁺								
2279.4	$(7/2^{-})$	1126.9	100	1152.71	5/2+								
2292.3 2302.61	5/2 ⁺ ,7/2 ⁺ 13/2 ⁺	1139.6 [@] 711.4 <i>3</i> 898.6 2 1921.6 2	100 [@]	1152.71 1590.92 1404.47 380.82	5/2 ⁺ 11/2 ⁺ 13/2 ⁺ 9/2 ⁺		I_{γ} : weak. I_{γ} : weak.						
2344.61		940.0 2 1963.9 2	100 <i>11</i> 100 <i>11</i>	1404.47 380.82	$\frac{13/2^{+}}{9/2^{+}}$								
2353.55	(7/2,9/2,11/2)	746.6 [@] 949.4 [@] 1559 7-2	100 [@] 47 [@]	1608.31 1405.3 793.73	$7/2^+, 9/2^+$ $(7/2^+, 9/2^+)$ $5/2^-$		F_{x} , γ 's of 746 and 949 are reported in (p γ) and 1559 is reported in (p $\gamma\gamma$)						
2366.92	15/2-	962.4 1	100	1404.47	$13/2^+$	D	$B(E1)(W.u.)>3.8\times10^{-8}$						

					A	Adopted Leve	els, Gamma	s (continued)	
						$\gamma(^{8})$	⁷ Y) (continu	ed)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	E_f	J_f^π	Mult. ^{‡#}	δ #	$\alpha^{\ddagger a}$	Comments
2400.0		2010 2 2	100	280.82	0/2+				$\begin{aligned} &\alpha(\text{K}) = 0.000257 \ 11; \ \alpha(\text{L}) = 2.77 \times 10^{-5} \ 13; \\ &\alpha(\text{M}) = 4.72 \times 10^{-6} \ 21 \\ &\alpha(\text{N}) = 6.4 \times 10^{-7} \ 3; \ \alpha(\text{O}) = 4.45 \times 10^{-8} \ 20 \\ &\delta: \ = +0.3 \ 7 \ \text{from } 1998\text{Sc}22. \end{aligned}$
2400.0	3/2+	$2019.2 \ 3$	100	0.0	9/2 1/2-				
2409	17/2+	1023.6 <i>I</i>	100	1404.47	13/2 ⁺	E2		5.91×10 ⁻⁴	B(E2)(W.u.)>0.0022 α (K)=0.000522 8; α (L)=5.74×10 ⁻⁵ 8; α (M)=9.80×10 ⁻⁶ 14 α (N)=1.316×10 ⁻⁶ 19; α (O)=9.10×10 ⁻⁸ 13
2479.07	$13/2^{-}$	441.1 ^{&} 5	26 <mark>&</mark> 3	2038.05	$(11/2^+)$	(D+O)			u(1)-1.510×10 17, u(0)-5.10×10 15
2552	9/2+	888.2 <i>1</i> 1400.0 <i>15</i>	100 <i>5</i> 100 <i>25</i>	1590.92 1152.71	$11/2^+$ $5/2^+$	(D)			
2563.7	9/2,11/2+	2172 2 973 <i>I</i> 1159 <i>I</i> 2182 0 15	50 25 50 13 100 13	380.82 1590.92 1404.47	$9/2^+$ $11/2^+$ $13/2^+$ $0/2^+$				
2602.3	(7/2)+	2183.0 <i>15</i> 1808.0 <i>15</i> 2222 0 <i>15</i>	38 13 33 11 100 22	380.82 793.73 380.82	$9/2^+$ $5/2^-$ $9/2^+$				
2648.91	(15/2 ⁻)	169.9 <i>1</i>	100 22	2479.07	13/2-	D(+Q)	+0.05 2	0.0434 7	$\alpha(K)=0.0382\ 6;\ \alpha(L)=0.00435\ 7;\ \alpha(M)=0.000745$ 12 $\alpha(N)=9.99\times10^{-5}\ 16;\ \alpha(O)=6.84\times10^{-6}\ 11$ Mult.: Supported by directional correlation of
2676.06	17/2-	27.2.1	< 5 9	2648 91	$(15/2^{-})$	[M1]		7 79	oriented states in ($^{11}B,4n\gamma$).
20,000	.,,_	247.9 2	20.0 18	2428.09	17/2+	(E1+M2)	+0.19 11	0.010 4	B(E1)(W.u.)< 1.4×10^{-5} $\alpha(K)=0.009 \ 3; \ \alpha(L)=0.0010 \ 4; \ \alpha(M)=0.00018 \ 7$ $\alpha(N)=2.4 \times 10^{-5} \ 9; \ \alpha(O)=1.6 \times 10^{-6} \ 6$ Transition strengths calculated assuming relative intensity of 3 β for the 27.2 γ , based on (α ,2n γ). Using this, B(M2)(W.u.)= $37 + 51 - 31$ which exceeds RUL of 1.
		309.1 <i>1</i>	100 12	2366.92	15/2-	M1+E2	+0.20 4	0.00962 20	B(M1)(W.u.)=(0.0024 11); B(E2)(W.u.)=(1.1 7) $\alpha(K)=0.00848 18; \alpha(L)=0.000953 22; \alpha(M)=0.000163 4$ $\alpha(N)=2.19\times10^{-5} 5; \alpha(O)=1.51\times10^{-6} 3$ Mult.: D+Q from (α ,2n γ) angular distribution and E1+M2 for δ = +0.2 4 is eliminated from RUL. δ : from (α ,2n γ); other: -0.08 8 from 80 Se(¹¹ B,4n γ).
2808.4 2827.20	$(13/2^{-})$ $21/2^{+}$	1040.2 ^{&} 5 399.1 <i>1</i>	100 ^{&} 100	1768.2 2428.09	(9/2 ⁻) 17/2 ⁺	E2		0.00792	B(E2)(W.u.)=4.6 3

From ENSDF

 $^{87}_{39}\mathrm{Y}_{48}$ -10

	Adopted Levels, Gammas (continued)												
						$\gamma(^{87}\text{Y})$ (cc	ontinued)						
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	E_f	${ m J}_f^\pi$	Mult. ^{‡#}	$\delta^{\#}$	$\alpha^{\ddagger a}$	Comments				
2961.47	17/2-	285.4 1	100 6	2676.06	17/2-	M1(+E2)	+0.07 28	0.0114 14	$ \begin{array}{c} \alpha(\mathrm{K}) = 0.00695 \ 10; \ \alpha(\mathrm{L}) = 0.000817 \ 12; \\ \alpha(\mathrm{M}) = 0.0001395 \ 20 \\ \alpha(\mathrm{N}) = 1.84 \times 10^{-5} \ 3; \ \alpha(\mathrm{O}) = 1.176 \times 10^{-6} \ 17 \\ \alpha(\mathrm{K}) = 0.0100 \ 12; \ \alpha(\mathrm{L}) = 0.00112 \ 16; \\ \alpha(\mathrm{M}) = 0.00019 \ 3 \end{array} $				
		312.6 3	40 4	2648.91	(15/2 ⁻)	(M1+E2)	-0.4 3	0.0102 17	$\begin{aligned} \alpha(N) &= 2.6 \times 10^{-5} 4; \ \alpha(O) &= 1.79 \times 10^{-6} 19 \\ \alpha(K) &= 0.0090 \ 15; \ \alpha(L) &= 0.00102 \ 19; \\ \alpha(M) &= 0.00018 \ 4 \\ \alpha(N) &= 2.3 \times 10^{-5} 5; \ \alpha(O) &= 1.58 \times 10^{-6} \ 23 \\ I_{\gamma}: \ from \ ^{80} Se(^{11}B, 4n\gamma). \end{aligned}$				
2986.9	(19/2+)	159.8 ^{&} 1	100 ^{&} 5	2827.20	21/2+	(M1+E2)	+0.06 2	0.0512 9	$\alpha(K)=0.0451 \ 8; \ \alpha(L)=0.00515 \ 10; \\ \alpha(M)=0.000882 \ 16 \\ \alpha(N)=0.0001182 \ 21; \ \alpha(O)=8.08\times10^{-6} \ 13 \\ B(M1)(W.u.)>0.078?; \ B(E2)(W.u.)>4.1? \\ E_{\gamma}: \ Taken \ from \ (\alpha,2n\gamma). \\ \delta: \ from \ (\alpha,2n\gamma); \ other: \ +0.25 \ 15 \ from \\ \frac{8^0}{8^0}Se(^{11}B,4n\gamma). $				
		558.7 ^{&} 5	35 ^{&} 4	2428.09	17/2+	[M1,E2]		0.00236 10	B(M1)(W.u.)>0.00041; B(E2)(W.u.)>0.092 α (K)=0.00208 9; α (L)=0.000231 12; α (M)=3.94×10 ⁻⁵ 19 α (N)=5.29×10 ⁻⁶ 25; α (O)=3.66×10 ⁻⁷ 14				
2995.6 2996.1	(17/2) (7/2,9/2,11/2)	346.7 2 1388.0 <i>15</i> 2615.0 <i>15</i>	100 100 <i>33</i> 100 <i>67</i>	2648.91 1608.31 380.82	(15/2 ⁻) 7/2 ⁺ ,9/2 ⁺ 9/2 ⁺								
3094.4 3262.9	(21/2) 9/2 ⁺ ,11/2 ⁺	107.5 2 1857.0 <i>15</i> 2883 2	100 100 <i>50</i> 100 <i>75</i>	2986.9 1405.3 380.82	(19/2 ⁺) (7/2 ⁺ ,9/2 ⁺) 9/2 ⁺	D							
3402.4	(19/2 ⁻)	440.9 ^{&} 5	51 ^{&} 4	2961.47	17/2-	(M1)		0.00390	α (K)=0.00344 5; α (L)=0.000381 6; α (M)=6.51×10 ⁻⁵ 10 α (N)=8.77×10 ⁻⁶ 13; α (O)=6.12×10 ⁻⁷ 9				
		726.4 ^{&} 3	100 & 8	2676.06	17/2-	(M1+E2)	+0.26 6	1.24×10 ⁻³	$\begin{aligned} &\alpha(\mathbf{K}) = 0.001098 \ I6; \ \alpha(\mathbf{L}) = 0.0001202 \ I8; \\ &\alpha(\mathbf{M}) = 2.05 \times 10^{-5} \ 3 \\ &\alpha(\mathbf{N}) = 2.76 \times 10^{-6} \ 4; \ \alpha(\mathbf{O}) = 1.94 \times 10^{-7} \ 3 \\ &\delta: \ \text{from} \ (\alpha, 2n\gamma); \ \text{other:} \ +0.09 \ I1 \ \text{from} \\ &\frac{80}{5} \mathrm{Se}(^{11}\mathrm{B}, 4n\gamma). \end{aligned}$				
3405.2 3446.5 3552.95	$3/2^{-}, 5/2^{-}$ (19/2 ⁻) (23/2 ⁺)	770.5 ^{&} 3 725.8 ^{&} 1	$100 \\ 100 \\ 100 \\ 100 \\ \&$	2202.17 2676.06 2827.20	//2 ⁺ ,9/2 ⁺ 17/2 ⁻ 21/2 ⁺	(D+Q) D(+Q)	-0.19 <i>17</i> -0.20 <i>22</i>	1.08×10 ⁻³ 2 1.24×10 ⁻³ 2	δ: from (¹¹ B,4nγ). α (K)=0.001097 21; α (L)=0.0001200 25; α (M)=2.05×10 ⁻⁵ 5 α (N)=2.76×10 ⁻⁶ 6; α (O)=1.94×10 ⁻⁷ 4				

					Adopted	Levels, Ga	mmas (cont	inued)	
						$\gamma(^{87}Y)$ (co	ontinued)		
E _i (level)	${\rm J}_i^\pi$	E_{γ}^{\dagger}	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^{‡#}	$\delta^{\#}$	$\alpha^{\ddagger a}$	Comments
									 B(M1)(W.u.)=(0.67 +23-14) δ: from ⁸⁰Se(¹¹B,4nγ); other: +0.05 2 from ⁸⁵Rb(α,2nγ). B(E2)(W.u.): not calculated due to large uncertainty in mixing ratio.
3595.2 3595.3	$(21/2,23/2,25/2^+) (21/2^+)$	768.0 <i>3</i> 608.4 <i>3</i>	100 100	2827.20 2986.9	21/2 ⁺ (19/2 ⁺)	D+Q	+0.06 3		B(M1)(W.u.)= $(1.9 \times 10^{-4} + 13 - 6);$ B(E2)(W.u.)= $(2.1 \times 10^{-3} + 15 - 6)$
3766.6	(21/2-)	364.1 <mark>&</mark> 5	100 <mark>&</mark> 8	3402.4	(19/2-)	D+(Q)	-0.15 20		
		1090.6 ^{&} 5	67 ^{&} 8	2676.06	17/2-	(E2)		5.12×10 ⁻⁴	$\alpha(K)=0.000453\ 7;\ \alpha(L)=4.96\times10^{-5}\ 7;\ \alpha(M)=8.47\times10^{-6}\ 12$
2008 8	$(22/2^{-})$	142 28 5	21& 6	27666	(21/2-)	$(\mathbf{D} \mid \mathbf{O})$			$\alpha(N)=1.138\times10^{-6}$ 16; $\alpha(O)=7.89\times10^{-6}$ 11
3908.8	(23/2)	142.2^{33} 5	$100^{\&} 6$	3/00.0	(21/2) $(10/2^{-})$	(D+Q)			
4039.40	(25/2+)	486.4 ^{&} 1	100 U 100 ^{&}	3552.95	$(19/2^{+})$ $(23/2^{+})$	D(+Q)	-0.16 20		B(M1)(W.u.)=(1.1 +4-3); B(E2)(W.u.)<817 α (K)=0.00276 <i>10</i> ; α (L)=0.000305 <i>13</i> ; α (M)=5.21×10 ⁻⁵ 22 α (D)=5.20×10 ⁻⁶ 2 · (C) 4 · 00 × 10 ⁻⁷ 4 C
4214.1	(27/2)	174.7 2	100	4039.40	$(25/2^+)$	D			$\alpha(N) = 7.0 \times 10^{-5} 3; \ \alpha(O) = 4.89 \times 10^{-7} 10^{-7}$
4555.0	$(23/2^+)$	1568.2 ^{&} 5	100 ^{&} 14	2986.9	(19/2 ⁺)	(E2)		3.50×10 ⁻⁴	$\begin{aligned} &\alpha(\mathrm{K}) = 0.000212 \ 3; \ \alpha(\mathrm{L}) = 2.29 \times 10^{-5} \ 4; \\ &\alpha(\mathrm{M}) = 3.91 \times 10^{-6} \ 6 \\ &\alpha(\mathrm{N}) = 5.27 \times 10^{-7} \ 8; \ \alpha(\mathrm{O}) = 3.70 \times 10^{-8} \ 6; \\ &\alpha(\mathrm{IPF}) = 0.0001110 \ 16 \end{aligned}$
		1727.6 ^{&} 5	62 ^{&} 19	2827.20	$21/2^+$				
4564.1	(23/2 ⁻)	1011.4 ^{&} 5	41 ^{&} 17	3552.95	(23/2+)	(D)			$\alpha(K)=0.000232 \ 4; \ \alpha(L)=2.50\times10^{-5} \ 4; \\ \alpha(M)=4.27\times10^{-6} \ 6 \\ \alpha(N)=5.75\times10^{-7} \ 8; \ \alpha(Q)=4.03\times10^{-8} \ 6 \\ \alpha(N)=5.75\times10^{-7} \ 8; \ \alpha(Q)=5.75\times10^{-7} \ $
		1117.6 ^{&} 3	100 ^{&} 7	3446.5	(19/2 ⁻)	(E2)		4.86×10 ⁻⁴	$\alpha(K) = 0.000429 \ 6; \ \alpha(L) = 4.70 \times 10^{-5} \ 7; \alpha(M) = 8.01 \times 10^{-6} \ 12 \alpha(N) = 1.077 \times 10^{-6} \ 15; \ \alpha(O) = 7.47 \times 10^{-8} \ 11; \alpha(IPF) = 1.145 \times 10^{-6} \ 19$
		1161.7 <mark>&</mark> 5	31 & 4	3402.4	(19/2-)				
4609.66	25/2+	569.0 <mark>&</mark> 5	11 ^{&} 3	4039.40	$(25/2^+)$				
		1056.8 <mark>&</mark> 1	100 ^{&} 25	3552.95	$(23/2^+)$	D(+Q)	0.04 18		
		1782.4 ^{&} 1	83 ^{&} 17	2827.20	21/2+	E2		3.91×10 ⁻⁴	B(E2)(W.u.)=4.9 21 α (K)=0.0001654 24; α (L)=1.785×10 ⁻⁵ 25; α (M)=3.04×10 ⁻⁶ 5 α (N)=4.10×10 ⁻⁷ 6; α (O)=2.89×10 ⁻⁸ 4; α (IPF)=0.000204 3

From ENSDF

 $^{87}_{39}\mathrm{Y}_{48}$ -12

					A	Adopted Lev	els, Gamma	s (continued)						
	$\gamma(^{87}\text{Y})$ (continued)													
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Iγ	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. ^{‡#}	δ#	$\alpha^{\ddagger a}$	Comments					
5228.2	$(25/2^{-})$	1189.1 ^{&} 5	78 ^{&} 11	4039.40	$(25/2^+)$	(D)								
		1319.4 <mark>&</mark> 5	100 ^{&} 11	3908.8	(23/2-)	D(+Q)	0.14 22							
		1675.1 <mark>&</mark> 5	56 ^{&} 6	3552.95	$(23/2^+)$	(D)			δ : From (¹¹ B,4n γ) δ was -0.27 27.					
5288.48	$(27/2^+)$	678.8 <mark>&</mark> 1	100 ^{&} 18	4609.66	$25/2^+$	(D,Q)								
		1249.0 ^{&} 5	11.8 ^{&} 18	4039.40	$(25/2^+)$	(D,Q)								
		1735.8 ^{&} 5	21 ^{&} 3	3552.95	$(23/2^+)$									
5319.7	(25/2-)	1553.0 2 5	100	3766.6	(21/2 ⁻)	(E2)		3.48×10^{-4}	α (K)=0.000216 3; α (L)=2.34×10 ⁻⁵ 4; α (M)=3.99×10 ⁻⁶ 6 α (N)=5.37×10 ⁻⁷ 8; α (O)=3.77×10 ⁻⁸ 6; α (IPF)=0.0001047 15					
5495.2	$(25/2^+)$	940.1 ^{&} 5	82 ^{&} 9	4555.0	$(23/2^+)$	D+Q	-0.8 5							
		1942.2 <mark>&</mark> 5	100 ^{&} 9	3552.95	$(23/2^+)$	D+Q	-0.8 3							
5759.59	(27/2 ⁻)	264.3 ^{&} 5	12.3 ^{&} 18	5495.2	(25/2+)	(D)			 δ: -0.20 20. Mult.: Although a calculated mixing ratio of -0.20 20 for M2/E1 is reported in (¹¹B,4nγ), an M2 component is excluded by RUL for larger half-lives reasonably close to 2.1 ps. 					
		439.7 <mark>&</mark> 5	14 ^{&} 4	5319.7	$(25/2^{-})$	D(+Q)	+0.10 10							
		531.5 <mark>&</mark> 5	9 <mark>&</mark> 4	5228.2	$(25/2^{-})$									
		1195.6 ^{&} 3	100 ^{&} 7	4564.1	(23/2 ⁻)	(E2)		4.26×10 ⁻⁴	B(E2)(W.u.)<2.1 α (K)=0.000370 6; α (L)=4.04×10 ⁻⁵ 6; α (M)=6.90×10 ⁻⁶ 10 α (N)=9.27×10 ⁻⁷ 13; α (O)=6.45×10 ⁻⁸ 9; α (IPF)=7.38×10 ⁻⁶ 11					
		1720.0 ^{&} 3	95 ^{&} 11	4039.40	(25/2+)	(E1+M2)	-0.14 10	5.20×10 ⁻⁴	B(E1)(W.u.)<1.3×10 ⁻⁵ ?; B(M2)(W.u.)<0.95? α (K)=9.7×10 ⁻⁵ 10; α (L)=1.04×10 ⁻⁵ 11; α (M)=1.78×10 ⁻⁶ 18 α (N)=2.39×10 ⁻⁷ 24; α (O)=1.69×10 ⁻⁸ 17; α (IPF)=0.000411 14 Mult.: (D+Q) from direction correlation of oriented nuclei in ⁸⁰ Se(¹¹ B,4nγ) and additional support from level scheme					
5907 1	(07/0+)	221 78 5	(0 ⁸ 17	5405 0	$(25/2^{\pm})$				placement.					
3827.1	$(21/2^{+})$	331.7^{-2} 3	0.8^{-1} 1/	5495.2 4600.66	$(25/2^{+})$	$(\mathbf{M1} + \mathbf{E2})$	102	4.14×10^{-4}	$\alpha(K) = 0.000258.5$, $\alpha(L) = 2.80 \times 10^{-5}.6$, $\alpha(M) = 6.64 \times 10^{-6}.10$					
		1217.4 3	100 - 14	4009.00	23/2	(WII+E2)	-1.0 3	4.14X10 ·	$\alpha(\mathbf{N}) = 0.000538 \ 5; \ \alpha(\mathbf{L}) = 5.09 \times 10^{-6} \ 6; \ \alpha(\mathbf{M}) = 0.04 \times 10^{-6} \ 10$ $\alpha(\mathbf{N}) = 8.95 \times 10^{-7} \ 13; \ \alpha(\mathbf{O}) = 6.28 \times 10^{-8} \ 10; \ \alpha(\mathbf{IPF}) = 9.4 \times 10^{-6} \ 5$					
		1787.8 <mark>&</mark> 5	44 ^{&} 7	4039.40	$(25/2^+)$									
5934.50	$(29/2^{-})$	107.5 <mark>&</mark> 5	38 ^{&} 4	5827.1	$(27/2^+)$	(D)								
		174.9 <mark>&</mark> 1	100 ^{&} 6	5759.59	$(27/2^{-})$	D+Q	-0.20 12							
		615.0 <mark>&</mark> 5	21 ^{&} 4	5319.7	$(25/2^{-})$									
		646.0 ^{&} 3	80 ^{&} 6	5288.48	$(27/2^+)$	(D)			Mult., δ : reported as E1+M2 with δ =-0.5(4), but this δ gives					

 $^{87}_{39}
m Y_{48}$ -13

	Adopted Levels, Gammas (continued)								
γ ⁽⁸⁷ Y) (continued)									
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	\mathbf{E}_{f}	J_f^π	Mult. ^{‡#}	δ#	Comments	
5934.50	(29/2 ⁻)	706.3 ^{&} 5	44 ^{&} 5	5228.2	(25/2 ⁻)			BM2W=4.E+2 +6-4 which is too large and δ must be essentially zero.	
6535.5	(31/2 ⁻)	601.0 ^{&} 1	100 ^{&}	5934.50	(29/2 ⁻)	(D+Q)	+0.14 14	B(M1)(W.u.)=(0.55 <i>13</i>); B(E2)(W.u.)=(3.E+1 +7-3) α (K)=0.00168 <i>3</i> ; α (L)=0.000184 <i>4</i> ; α (M)=3.15×10 ⁻⁵ <i>6</i> α (N)=4.24×10 ⁻⁶ <i>8</i> ; α (O)=2.97×10 ⁻⁷ <i>5</i>	
7016.6	(33/2 ⁻)	481.1 ^{&} 1	100 ^{&}	6535.5	(31/2 ⁻)	(D+Q)	-0.10 15	B(M1)(W.u.)=(1.8 5); B(E2)(W.u.)=(9.E+1 +26-9) α (K)=0.00281 7; α (L)=0.000311 8; α (M)=5.31×10 ⁻⁵ 14 α (N)=7.15×10 ⁻⁶ 18; α (O)=4.99×10 ⁻⁷ 11	

[†] Weighted average of values from $\varepsilon + \beta^+$ decay, $(p,n\gamma)$, and $(p,2n\gamma)$ or $(\alpha,2n\gamma)$, or one of these measurements, unless indicated otherwise.

[‡] For calculation of reduced transition probabilities and the related α , the assignments of stretched Q are taken to be E2.

[#] From $(\alpha, 2n\gamma)$, unless indicated otherwise.

^(a) From (p,γ) ; these values do not have uncertainties and the energies are quoted here to the nearest 0.1 keV. [&] From ⁸⁰Se(¹¹B,4n γ).

^a Additional information 1.
 ^b Multiply placed with undivided intensity.

From ENSDF

Level Scheme

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{87}_{39}Y_{48}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{87}_{39} Y_{48}$

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

 $^{87}_{39} Y_{48}$

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

 $^{87}_{39}Y_{48}$

 $^{87}_{39} Y_{48}$