⁸⁶Sr(³He,d), (d,n) 1971Ma11,1976Ho11

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	T. D. Johnson and W. D. Kulp(a)	NDS 129, 1 (2015)	27-Jul-2015			

1971Ma11: (³He,d), E(³He)=20 MeV, FWHM=25 keV, θ =10°-70°. DWBA analysis of angular distributions.

1976Ho11: (d,n) $E_d=12$ MeV, $\theta=5^{\circ}-55^{\circ}$, observed ground state and first three excited levels. DWBA analysis of angular distributions.

Data are from 1971Ma11, unless otherwise noted.

⁸⁷Y Levels

E(level)	$J^{\pi \dagger}$	L	$(2J+1)C^2S^{\ddagger}$	Comments
0.0	$1/2^{-}$	1	1.15	
380 4	$9/2^{+}$	4	7.19	
793 4	5/2-	3	1.15	
982 4	$3/2^{-}$	1	0.54	
1155 4	$5/2^{+}$	2	0.32	
1400 [#] 4	,			E(level): Possibly the $(7/2^+, 9/2^+)$ 1405 keV level in the Adopted Levels.
1605 4	$9/2^{+}$	4	0.53	J^{π} : assigned $(7/2^+, 9/2^+)$ in Adopted Levels for level at 1608.3.
1848 4	3/2-	1	0.07	J^{π} : Assigned $1/2^{-}$ in Adopted Levels.
				$(2J+1)C^2S$: The authors give $(2J+1)C^2S = 0.07$ for $2p_{1/2}$.
2085 4	$3/2^{-}$	1	0.09	
2203 4	$9/2^{+}$	4	0.79	J^{π} : assigned $7/2^+, 9/2^+$ in Adopted Levels for level at 2202.15.
2278 4	5/2-	3	0.14	J^{π} : assigned (7/2 ⁻) in Adopted Levels.
2407 4	$5/2^{+}$	2	0.03	J^{π} : assigned $3/2^+$ in Adopted Levels.
2730 4	$5/2^{-}$	3	0.16	J^{π} : assigned $5/2^{-}, 7/2^{-}$ in Adopted Levels.
2907 4	$5/2^{+}$	2	0.12	J^{π} : assigned $3/2^+, 5/2^+$ in Adopted Levels.
2995 4	$5/2^{+}$	2	0.11	
3043 4	$5/2^{+}$	2	0.20	J^{π} : assigned $3/2^+, 5/2^+$ in Adopted Levels.
3090 4	$5/2^{+}$	2	0.25	J^{π} : assigned $3/2^+, 5/2^+$ in Adopted Levels.
3120 ^{#@} 4				J^{π} : assigned (13/2 ⁻) in Adopted Levels.
3195 4	$1/2^{+}$	(0)	(0.04)	
3306 4	$5/2^{+}$	2	0.11	J^{π} : assigned $3/2^+, 5/2^+$ in Adopted Levels.
3353 4	$5/2^{+}$	2	0.16	J^{π} : assigned $3/2^+, 5/2^+$ in Adopted Levels.
3406 4	5/2+	2	0.09	J^{π} : assigned $3/2^+, 5/2^+$ in Adopted Levels.

[†] Assignments are those assumed for extraction of S. Assignments which differ in the Adopted Levels are noted.

[‡] Spectroscopic factors were determined from measured absolute cross sections and finite-range nonlocal DWBA calculations (1971Ma11). Those of 1976Ho11 are in fair agreement.

[#] Weak level not fitted by any L-value. It is assumed by the authors to be populated by non-direct processes.

^(a) The value 3150 given in the author's Fig. 4 is a misprint. The correct value of 3120 is given in the text and in the spectrum of Fig. 1. No entry for this level is given in the authors' table.