# $^{87}{\rm Y}~\varepsilon$ decay (79.8 h)

|                 | History                         | 7                 |                        |
|-----------------|---------------------------------|-------------------|------------------------|
| Туре            | Author                          | Citation          | Literature Cutoff Date |
| Full Evaluation | T. D. Johnson and W. D. Kulp(a) | NDS 129, 1 (2015) | 27-Jul-2015            |

Parent: <sup>87</sup>Y: E=0.0;  $J^{\pi}=1/2^{-}$ ;  $T_{1/2}=79.8$  h 3;  $Q(\varepsilon)=1861.7$  11;  $\%\varepsilon+\%\beta^+$  decay=100.0 1988AL01: Source preparation by <sup>87</sup>Sr(p,n) with E<sub>p</sub>=18 MeV. Measured precise E<sub> $\gamma$ </sub> and relative I<sub> $\gamma$ </sub>; deduced  $\varepsilon$  branching. 1993Va03: Measured P<sub>K</sub> to 873 level. 1984Pr01: Measured parent T<sub>1/2</sub> and relative I<sub> $\gamma$ </sub>. 1971Ja24: Measured E<sub> $\gamma$ </sub> and I<sub> $\gamma$ </sub>. 1970Kl02 and 1970Ca17: Measured  $\alpha_K$  for both  $\gamma$ 's. 1969Zo04: Measured parent T<sub>1/2</sub> and I<sub> $\gamma$ </sub>. 1969Cl11: Measured E<sub> $\gamma$ </sub>(388). 1967Mi13: Measured parent T<sub>1/2</sub> and  $\beta^+$  spectrum. 1963Gr41: Measured K/L for 388  $\gamma$ .

#### <sup>87</sup>Sr Levels

Note that the level at 388 keV decays 99.70 8% by an isomeric transition to the ground state and 0.30 8% by  $\varepsilon + \beta + \text{decay to} \text{ }^{87}\text{Rb.}$ 

| E(level) <sup>†</sup>           | $J^{\pi \ddagger}$                                       | T <sub>1/2</sub>  | Comments                                  |
|---------------------------------|----------------------------------------------------------|-------------------|-------------------------------------------|
| 0.0<br>388.5276 23<br>873.338 6 | 9/2 <sup>+</sup><br>1/2 <sup>-</sup><br>3/2 <sup>-</sup> | 2.815 h <i>12</i> | $T_{1/2}$ : from <sup>87m</sup> Sr decay. |

<sup>†</sup> From  $\gamma$  energies.

<sup>‡</sup> From <sup>87</sup>Sr Adopted Levels.

#### $\varepsilon, \beta^+$ radiations

The decay to the <sup>87</sup>Sr ground state is unique third forbidden for which the log*ft* is expected to be about 21 (1998Si17) with a corresponding  $I_{\varepsilon+\beta+}$  of  $1.0x10^{-13}\%$ .

| E(decay)    | E(level) | $I\beta^+$ <sup>†</sup> | $\mathrm{I}\varepsilon^{\dagger}$ | Log ft  | $\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------|----------|-------------------------|-----------------------------------|---------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (988.4 11)  | 873.338  |                         | 93.4 4                            | 5.444 4 | 93.4 4                                        | εK=0.8729; εL=0.1043; εM+=0.02279<br>Iε: from from analysis of γ data (1988Al01); others: 97 from<br>γ data (1971Ja24), 87.4 from decomposition of $\beta^+$ spectrum<br>(1967Mi13). From the analysis of 1988Al01, the authors<br>used %IT(388 level) = 99.70 8, Iγ(484γ)/Iγ(388γ)=1.093<br>5, α(388γ)=0.212 2, α(484γ)=0.00298, T1/2( <sup>87</sup> Y)=79.8 h<br>3 and T1/2( <sup>87m</sup> Sr=2.81 h <i>I</i> , all consistent with the present<br>adopted values for these quantities. |
| (1473.2 11) | 388.5276 | 0.18 2                  | 6.4 <i>4</i>                      | 6.96 5  | 6.6 7                                         | The measured $P_{K}=0.91~5~(1993Va03)$ , which agrees with the theoretical value of 0.873.<br>av $E\beta$ =200.41 47; $\varepsilon$ K=0.8499 3; $\varepsilon$ L=0.10056 3; $\varepsilon$ M+=0.021952 6                                                                                                                                                                                                                                                                                     |

<sup>†</sup> Absolute intensity per 100 decays.

### $^{87}{\rm Y}~\varepsilon$ decay (79.8 h) (continued)

## $\gamma(^{87}\mathrm{Sr})$

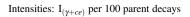
Iy normalization: from the intensity of the 484  $\gamma$ , the normalization factor is 93.4 / (113.3 x 1.0029), where the 113.3 would be the relative intensity of the 484  $\gamma$  if the half-life of the 388 level were insignificant.

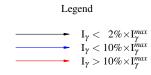
 $\alpha$ (K)exp: are weighted average of values from 1970K102 and 1961Hu12, normalized to the 661  $\gamma$  from the decay of <sup>137</sup>Cs. Other: 1970Ca17.

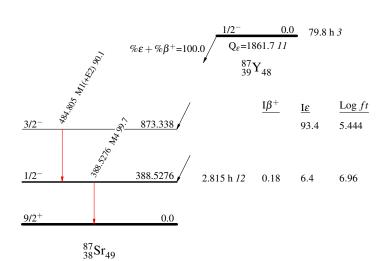
| $E_{\gamma}^{\dagger}$   | $I_{\gamma}^{\#a}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_f$    | $\mathbf{J}_{f}^{\pi}$ | Mult.@  | $\delta^{@}$ | α <b>&amp;</b> | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------|--------------------|------------------------|----------------------|----------|------------------------|---------|--------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 388.5276 <sup>‡</sup> 23 | 100                | 388.5276               | 1/2-                 | 0.0      | 9/2+                   | M4      |              | 0.213          | $\alpha(K) \exp = 0.168 \ 8$<br>$\alpha(K) = 0.181 \ 3; \ \alpha(L) = 0.0266 \ 4;$<br>$\alpha(M) = 0.00456 \ 7$<br>$\alpha(N) = 0.000557 \ 8;$<br>$\alpha(O) = 3.13 \times 10^{-5} \ 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 484.805 <sup>‡</sup> 5   | 109.3 5            | 873.338                | 3/2-                 | 388.5276 | 1/2-                   | M1(+E2) | <0.6         | 0.00298 17     | $\begin{aligned} &\alpha(\text{K})\exp=0.00260 \ 11\\ &\alpha(\text{K})=0.00264 \ 15;\\ &\alpha(\text{L})=0.000290 \ 18;\\ &\alpha(\text{M})=4.9\times10^{-5} \ 3\\ &\alpha(\text{N})=6.1\times10^{-6} \ 4;\\ &\alpha(\text{O})=3.95\times10^{-7} \ 20\\ &\text{Ly}: \text{ weighted average of } 108.7 \ 11\\ &(1969Zo04), \ 110.0 \ 5\\ &(1984Pr01), \ and \ 108.8 \ 5\\ &(1988Al01); \ average \ gives \ a\\ &\text{reduced-}\chi^2=1.62\ and \ the\\ &\text{external uncertainty has been}\\ &\text{adopted. This is the measured}\\ &\text{value at secular equilibrium,}\\ &\text{which is } 0.966\ times \ the \ value\\ &\text{that would be observed if the}\\ &388\ level \ had \ an \ insignificant\\ &\text{half-life.} \end{aligned}$ |

<sup>†</sup> From 1988A101, on a scale where the strong <sup>198</sup>Au line has  $E_{\gamma}$ =411.8044 keV; if the energies of the reference lines are adjusted to those of the evaluation of 2000He14, the 388 and 484 energies would be lower by 4 and 3 eV, respectively.

<sup>‡</sup> The authors' value has been corrected for the reference data in 200He14. <sup>#</sup> Due to the significant half-life of the 388-keV level, the measured relative intensity of the two  $\gamma$  rays will vary with time and the secular equilibrium ratio is 1.0352 2 times the relative intensity.


<sup>@</sup> From  $\alpha_{\rm K}(\exp)$ .


& Additional information 1.


<sup>a</sup> For absolute intensity per 100 decays, multiply by 0.822 7.

# <sup>87</sup>Y ε decay (79.8 h)

### Decay Scheme





