${ }^{87}$ Sr IT decay

History

$\frac{\text { Type }}{\frac{\text { Author }}{\text { Full Evaluation }} \quad \text { History }} \quad$ Citation \quad| Literature Cutoff Date |
| :--- |

Parent: ${ }^{87}$ Sr: E=388.533 3; $\mathrm{J}^{\pi}=1 / 2^{-} ; \mathrm{T}_{1 / 2}=2.815 \mathrm{~h} 12 ; \% \mathrm{IT}$ decay $=99.708$
${ }^{87} \mathrm{Sr}$-\%IT decay: from a measurement of the ratio of ${ }^{87} \mathrm{Rb} \hat{\mathrm{X}}_{K \alpha}$ to ${ }^{87} \mathrm{Sr} \mathrm{X}_{K \alpha}, 1969 \mathrm{Zo} 04$ determined a value of $0.30 \% 8$ for the ε branch to ${ }^{87} \mathrm{Rb}$.
${ }^{87}$ Sr Levels

E(level)	$\mathrm{J}^{\pi \dagger}$	$\mathrm{T}_{1 / 2}$	Comments
0.0	9/2 ${ }^{+}$		
388.5333	$1 / 2^{-}$	2.815 h 12	$\mathrm{T}_{1 / 2}$: weighted average of 2.80 h 3 (1951Hy24), 2.83 h 2 (1965Bo42), 2.805 h 1 (1968Go30, with reported uncertainty divided by 3 to give 1σ value), 2.83 h 5 (1969Zo04), 2.793 h 9 (1970Le07), 2.81 h 2 (1970LyZZ), 2.97 h 10 (1971Bu08), 2.83 h 1 (1971Ja24 and 1971Oo01), 2.81 h 2 (1972Em01), 2.795 h 13 (1982Gr07), 2.827 h 1 (1992An19), and 2.811 h 27 (1997We13). The two most precise values, 2.8051 and 2.8271 , differ by about 20σ and the reduced $-\chi^{2}$ value for the average is 28 . Although the 2.805 value is somewhat old, it is from a reliable lab and measured by $\mathrm{T} 1 / 2$ experts, who have provided metrology standards for several nuclei. The next most precise value is 2.7939 , which supports this lower value. With the two uncertainties of 0.001 increased to 0.003 , the reduced $-\chi^{+2}$ is 3.7 and the Limitation of Relative Statistical Weight method (1985ZiZY,1992Ra09) expands the final uncertainty to include the most precise value; and this uncertainty of 0.012 is adopted. $\mathrm{T}_{1 / 2}$: a change in this half-life has been measured to be $0.8 \% 5$ for a change in temperature from 293 K to 77 K (2001A123).

${ }^{\dagger}$ From ${ }^{87}$ Sr Adopted Levels.

$$
\begin{aligned}
& \underline{\gamma\left({ }^{87} \mathrm{Sr}\right)} \\
& \frac{\mathrm{E}_{\gamma}}{388.5313} \quad \frac{\mathrm{I}_{\gamma^{\dagger}}}{82.4421} \quad \frac{\mathrm{E}_{i}(\text { level })}{388.533} \quad \frac{\mathrm{~J}_{i}^{\pi}}{1 / 2^{-}} \quad \frac{\mathrm{E}_{f}}{0.0} \frac{\mathrm{~J}_{f}^{\pi}}{9 / 2^{+}} \quad \frac{\text { Mult. }}{\mathrm{M} 4} \quad \frac{\alpha^{\dagger}}{0.213} \quad \frac{\mathrm{I}_{(\gamma+c e)}{ }^{\ddagger}}{100}
\end{aligned}
$$

[^0]
${ }^{87}$ Sr IT decay

Decay Scheme
Intensities: $\mathrm{I}_{(\gamma+c e)}$ per 100 parent decays
\%IT=99.70 8

[^0]: \dagger Additional information 1.

 * For absolute intensity per 100 decays, multiply by 0.99708 .

