⁸⁶Kr(α ,3n γ), ⁸⁴Kr(α ,n γ) 1981Ek01,1975Ar06

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	T. D. Johnson and W. D. Kulp(a)	NDS 129, 1 (2015)	27-Jul-2015

1981Ek01: ⁸⁴Kr(α ,n γ), E=11-17 MeV, Ge detectors, measured γ spectra, angular distributions, linear polarization, excitation functions, $\gamma\gamma$ coincidences, and DSA half-life measurements.

1975Ar06: ⁸⁴Kr(α ,xn γ), E=10-14 MeV and ⁸⁶Kr(α ,3n γ), E=11-40 MeV, Ge detectors, measured γ spectra, angular distributions, $\gamma\gamma$ coincidences, and DSA half-life measurements.

⁸⁷Sr Levels

E(level)	J^{π}	$T_{1/2}^{\ddagger}$	Comments
0.0	9/2+		
388.54 18	$1/2^{-}$	2.815 h 12	$T_{1/2}$: from Adopted Levels.
			J^{π} : From Adopted Levels.
873.29 24	3/2-	1.7 ps 7	J^{π} : linear polarization measurments and additional arguments in Adopted Levels.
1228.36 23	$5/2^{+}$	1.0 ps 4	J ^{π} : from E1 γ to 3/2 ⁻ level and E2 γ to 9/2 ⁺ supported by $\gamma(\theta)$ and $\gamma(\text{pol})$.
1254.0 <i>3</i>	5/2-	2.8 ps +28-9	J^{π} : $\gamma(\theta)$ and $\gamma(\text{pol})$ supporting E2 γ to $1/2^-$; additional argument in Adopted Levels.
1740.0 4	13/2+ #	0.28 ps 9	J ^{π} : γ yield function and yrast argument.
1770.7 3	5/2+	5.5 ps +63-21	J^{π} : $\gamma(\theta)$ and polarization supporting E2 γ to $9/2^+$; additional argument in Adopted Levels.
1919.9 <i>4</i>	$7/2^{+}$	0.15 ps 5	J^{π} : $\gamma(\theta)$ and $\gamma(\text{pol})$ are consistent only with $J^{\pi}=7/2^+$ and $J^{\pi}=11/2^+$ (1981Ek01).
2109.8 5	3/2-	0.10 ps 3	J ^{π} : Adopted Levels and consistent with $\gamma(\theta)$) and polarization.
2153.5 6	$(11/2)^+$	<0.09 ps	J^{π} : $\gamma(\theta)$ and polarization supporting M1+E2 γ to 9/2 ⁺ ; additional argument in Adopted Levels.
2168.8 4	$(1/2^+)$		
2235.7 10	9/2+	0.15 ps 4	J^{π} : $\gamma(\theta)$ and $\gamma(\text{pol})$ are consistent only with $J^{\pi}=9/2^+$ (1981Ek01).
2414.7 3	3/2-	0.12 ps 4	J^{π} : γ excitation function suggests J=(3/2) (1981Ek01).
2420.4 8	$(5/2)^{-}$	0.08 ps 4	J^{π} : γ excitation function suggests J=(5/2) (1981Ek01).
25262.6	11/0-	0.10	$T_{1/2}$: from measurement at $E_{\alpha} = 11$ MeV; at $E_{\alpha} = 14$ MeV 1981Ek01 measure 0.19 ps 4.
2536.3 6	$11/2^{-}$	0.19 ps 8	J^{π} : from $\gamma(\theta)$ and $\gamma(\text{pol})$ for 591 γ 1981Ek01 derive $J^{\pi} = 11/2^{-1}$.
2550.0 8	(7/2)*	0.22 ps 7	J [*] : γ excitation function suggests J=(7/2) (1981Ek01); further supported by $\gamma(\theta)$ and $\gamma(\text{pol})$.
2555.0 7	$(9/2)^{-}$	0.06 ps 4	J^{π} : From Adopted Levels.
2596.0 5	13/2-	1.0 ps 4	J^{π} : Supported by $\gamma(\theta)$ and $\gamma(\text{pol})$ with additional argument in Adopted Levels.
2682.2 6 2704.3? 20	(3/2) ⁺	0.25 ps 9	J^{α} : $\gamma(\theta)$, $\gamma(\text{pol})$, and excitation function in $(\alpha, n\gamma)$ favor $J^{\alpha} = (3/2)^{+}$. E(level): not confirmed by 1981Ek01.
2706.9 6	$7/2^+, 9/2^+$	0.55 ps 14	J^{π} : From Adopted Levels.
2821.2 6	$(9/2)^+$	0.7 ps 3	J^{π} : $\gamma(\theta)$ and polarization for 1050 γ give 5/2 ⁺ ,7/2 ⁺ , 9/2 ⁺ and J γ excitation function suggests J \geq 9/2 (1981Ek01).
2831.2 5	$15/2^{-}$	<0.35 ps	J^{π} : From Adopted Levels.
2920.8 12	$7/2^+, 9/2^+$		J^{π} : From Adopted Levels.
3035.5 5			
3117.4 6	13/2-	0.38 ps 12	J ^{π} : from $\gamma(\theta)$ and $\gamma(\text{pol})$ 1981Ek01 derive J ^{π} =13/2 ⁻ .
3155.0 15			
3249.4 5	$(17/2)^{-#}$	1.3 ps +16-6	J ^{π} : from $\gamma(\theta)$, $\gamma(\text{pol})$, and excitation function.
3390.9 6	$(19/2^{-})^{\#}$		J^{π} : yield function and additional arguments in Adopted Levels.
3610.9 6	$(21/2)^{\#}$		J^{π} : Yield functions.
3718.0 6	(19/2)		J^{π} : from γ yield functions and correlation of alignment to initial J.
4440.3 10	(23/2)#		J ^{π} : presumably dipole γ to 21/2 ⁺ ; from γ yield functions in it follows that 829 γ is part of the yrast cascade.

[†] Assignments are from these data while those from Adopted Levels are indicated.
 [‡] From DSAM analysis (1981Ek01), unless indicated otherwise.

⁸⁶Kr(α ,3n γ), ⁸⁴Kr(α ,n γ) 1981Ek01,1975Ar06 (continued)

⁸⁷Sr Levels (continued)

[#] From γ yield functions, 1975Ar06 conclude that the 1740-1091-418-142-220-829 cascade forms the yrast cascade whereby the 1740 transition is an E2 transition and the other transitions are dipole transitions.

coin: from 1981Ek01.

 $\boldsymbol{\omega}$

E_{γ}^{\dagger}	Iγ [‡]	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^{π}	Mult. [#]	δ#	α^{d}	Comments
141.5 2 220.0 2 235.2 [@] 4	14 5 1.6 2 2.2	3390.9 3610.9 2831.2	(19/2 ⁻) (21/2) 15/2 ⁻	3249.4 3390.9 2596.0	(17/2) ⁻ (19/2 ⁻) 13/2 ⁻	$(D)^a (D)^a$			E_{γ} : Not reported by 1981Ek01. From
327.1 <i>3</i> 355.1 2	1.85 8 17.9 <i>5</i>	3718.0 1228.36	(19/2) 5/2 ⁺	3390.9 873.29	(19/2 ⁻) 3/2 ⁻	E1(+M2)	+0.07 +2-5	0.00280 11	$\begin{aligned} & (235\gamma)/(\gamma(1091\gamma)=0.067 \text{ in } 1975\text{Ar06}). \\ & A_2=-0.29 \ II, \ A_4=0 \ (1975\text{Ar06}). \\ & A_2=+0.39 \ 5, \ A_4=-0.10 \ 7. \\ & \text{B}(\text{E1})(\text{W.u.})=(0.0012 \ 4); \ & \text{B}(\text{M2})(\text{W.u.})=(2.1\times10^2 \ I4) \\ & \text{B}(\text{E1})(\text{W.u.})=0.0012 \ 4 \\ & \alpha(\text{K})=0.00248 \ 9; \ \alpha(\text{L})=0.000270 \ I1; \ \alpha(\text{M})=4.52\times10^{-5} \\ & I8 \\ & \alpha(\text{N})=5.65\times10^{-6} \ 23; \ \alpha(\text{O})=3.60\times10^{-7} \ I4 \\ & A_2=-0.106 \ I8, \ A_4=-0.005 \ 21. \\ & \text{Pol}=+0.25 \ 5. \\ & \text{Mult.: M2 exceeds RUL by 1 to 2 } \sigma. \ & \text{Using the} \\ & \minmm \delta \ \text{and maximum } T_{1/2}, \ & \text{B}(\text{M2})(\text{W.u.})>12, \end{aligned}$
380.8 <i>3</i>	11 4	1254.0	5/2-	873.29	3/2-				while the maximum δ and minimum T _{1/2} yields B(M2)(W.u.)<575. The RUL limit is 1.
388.6 ^{wb} 2 418.2 2	20.0 6	388.54 3249.4	1/2 ⁻ (17/2) ⁻	0.0 2831.2	9/2 ⁺ 15/2 ⁻	M4 M1+E2		0.0052 12	Mult.: From Adopted Levels. $\alpha(K)=0.0046 \ 11; \ \alpha(L)=0.00052 \ 13; \ \alpha(M)=8.7\times10^{-5} \ 22$ $\alpha(N)=1.1\times10^{-5} \ 3; \ \alpha(O)=6.7\times10^{-7} \ 14$ $A_2=-0.239 \ 16, \ A_4=-0.007 \ 20.$ Pol=-0.29 5.
484.9 ^{@b} 3	123 4	873.29	3/2-	388.54	1/2-	M1+E2	+0.19 5	0.00286 5	α (K)=0.00253 5; α (L)=0.000277 5; α (M)=4.66×10 ⁻⁵ 8 α (N)=5.85×10 ⁻⁶ 10; α (O)=3.81×10 ⁻⁷ 6 A ₂ =-0.018 18, A ₄ =-0.023 22. Pol=-0.14 2.
517.3 ^{&} 10 521.0 ^{&} 7	10 <i>3</i> 3.6 2	1770.7 3117.4	5/2+ 13/2 ⁻	1254.0 2596.0	5/2 ⁻ 13/2 ⁻	M1+E2	+0.29 16	0.00245 9	$\alpha(K)=0.00217 \ 8; \ \alpha(L)=0.000238 \ 10; \ \alpha(M)=3.99\times10^{-5}$ 16 $\alpha(N)=5.01\times10^{-6} \ 19; \ \alpha(O)=3.26\times10^{-7} \ 11$
542.3 3	15.1 5	1770.7	5/2+	1228.36	5/2+	M1(+E2)	-0.04 8	0.00217 4	A ₂ =+0.50 8, A ₄ =-0.09 8. Pol=+0.37 23. α (K)=0.00192 3; α (L)=0.000210 4; α (M)=3.52×10 ⁻⁵ 6 α (N)=4.43×10 ⁻⁶ 7; α (O)=2.90×10 ⁻⁷ 5 A ₂ =+0.139 18, A ₄ =-0.018 22. Pol=+0.25 7
581.3 5	5.7 2	3117.4	13/2-	2536.3	11/2-	M1+E2	+0.047 +12-23	0.00185	$\alpha(K)=0.001640\ 24;\ \alpha(L)=0.000179\ 3;$

 $^{87}_{38}\mathrm{Sr}_{49}$ -3

			⁸⁶ Kr(α ,3n γ), ⁸⁴ Kr(α ,n γ) 1981Ek01,1975A					5Ar06 (continued)			
$\gamma(^{87}Sr)$ (continued)											
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	J_i^π	\mathbf{E}_{f}	J_f^π	Mult. [#]	$\delta^{\#}$	α^{d}	Comments		
691.8 <i>4</i> 787.0 <i>4</i>	9 <i>3</i> 8.1 <i>3</i>	1919.9 2706.9	7/2+ 7/2+,9/2+	1228.36 1919.9	5/2 ⁺ 7/2 ⁺	M1(+E2)	0.00 9	9.39×10 ⁻⁴	$\begin{aligned} &\alpha(M) = 3.00 \times 10^{-5} 5 \\ &\alpha(N) = 3.77 \times 10^{-6} 6; \ \alpha(O) = 2.47 \times 10^{-7} 4 \\ &A_2 = -0.21 4, \ A_4 = 0.00 4. \\ &Pol = -0.68 15. \\ &POL = -0.02 7. \\ &\alpha(K) = 0.000832 12; \ \alpha(L) = 8.99 \times 10^{-5} 13; \\ &\alpha(M) = 1.509 \times 10^{-5} 22 \\ &\alpha(N) = 1.90 \times 10^{-6} 3; \ \alpha(O) = 1.249 \times 10^{-7} 18 \\ &A_2 = -0.312 23, \ A_4 = -0.012 27. \\ &Pol = -0.41 15. \end{aligned}$		
^x 806.8 [@] 6 829.4 [@] 8 855.9 3	37.9 11	4440.3 2596.0	(23/2) 13/2 ⁻	3610.9 1740.0	(21/2) 13/2 ⁺	(D) ^{<i>a</i>} E1+(M2)	-0.10 12	0.00035 6	A ₂ =-0.25 22, A ₄ =0 (1975Ar06). α (K)=0.00031 6; α (L)=3.4×10 ⁻⁵ 6; α (M)=5.7×10 ⁻⁶ 10 α (N)=7.1×10 ⁻⁷ 13; α (O)=4.6×10 ⁻⁸ 8 A ₂ =+0.299 24, A ₄ =+0.001 28. Pal= 0.62.0		
865.4 ^{@b} 4	64.4 <i>19</i>	1254.0	5/2-	388.54	1/2-	E2		8.17×10 ⁻⁴	Pol=-0.62 9. $\alpha(K)=0.000723 \ 11; \ \alpha(L)=7.93\times10^{-5} \ 12; \ \alpha(M)=1.331\times10^{-5} \ 19 \ \alpha(N)=1.666\times10^{-6} \ 24; \ \alpha(O)=1.068\times10^{-7} \ 15 \ A_2=+0.190 \ 20, \ A_4=-0.031 \ 24. \ Pol=+0.30 \ 4. \ \delta: \ \delta(M3/E2)=0 \ 00 \ +11-27.$		
882.0 ^{&} 8 911.5 5	10 <i>3</i> 6.2 <i>3</i>	3035.5 2682.2	(3/2)+	2153.5 1770.7	(11/2) ⁺ 5/2 ⁺	M1+E2	-0.5 +3-13	6.90×10 ⁻⁴ 24	$\alpha(K)=0.000611 \ 21; \ \alpha(L)=6.6\times10^{-5} \ 3; \alpha(M)=1.11\times10^{-5} \ 5 \alpha(N)=1.40\times10^{-6} \ 6; \ \alpha(O)=9.14\times10^{-8} \ 24 A_2=+0.08 \ 4, \ A_4=-0.01 \ 5. Pol=-0.04 \ 17.$		
1034.4 8 1050.5 5	7.5 3	2821.2	(9/2)+	1770.7	5/2+	E2		5.17×10 ⁻⁴	α (K)=0.000458 7; α (L)=4.98×10 ⁻⁵ 7; α (M)=8.35×10 ⁻⁶ 12 α (N)=1.047×10 ⁻⁶ 15; α (O)=6.78×10 ⁻⁸ 10 A ₂ =+0.30 3, A ₄ =-0.01 4. Pol=0.29 16		
1091.3 <i>3</i>	32.9 12	2831.2	15/2-	1740.0	13/2+	E1(+M2)	+0.012 17	2.11×10 ⁻⁴	$\alpha(K)=0.000188 \ 3; \ \alpha(L)=2.00\times10^{-5} \ 3; \\ \alpha(M)=3.35\times10^{-6} \ 5 \\ \alpha(N)=4.22\times10^{-7} \ 6; \ \alpha(O)=2.76\times10^{-8} \ 4 \\ A_2=-0.256 \ 16, \ A_4=-0.021 \ 20. \\ Pol=+0.39 \ 5. \\ \delta: \ \delta(M2/E1)=+0.012 \ 17. $		

4

$\gamma(^{87}\text{Sr})$ (continued)									
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^π	E_f	J_f^π	Mult. [#]	δ#	α^{d}	Comments
1166.9 ^{&} 12	10.5 4	2420.4	(5/2)-	1254.0	5/2-	D+Q			$A_2 = +0.36 \ 3, \ A_4 = -0.03 \ 4.$ Pol=-0.51 25.
1228.5 ^{@b} 4	100 3	1228.36	5/2+	0.0	9/2+	E2		3.78×10 ⁻⁴	$\begin{aligned} &\alpha(\mathbf{K}) = 0.000324 \ 5; \ \alpha(\mathbf{L}) = 3.50 \times 10^{-5} \ 5; \ \alpha(\mathbf{M}) = 5.88 \times 10^{-6} \ 9 \\ &\alpha(\mathbf{N}) = 7.38 \times 10^{-7} \ 11; \ \alpha(\mathbf{O}) = 4.81 \times 10^{-8} \ 7; \\ &\alpha(\mathbf{IPF}) = 1.261 \times 10^{-5} \ 19 \\ &\mathbf{A}_2 = +0.107 \ 16, \ \mathbf{a}_4 = -0.024 \ 20. \\ &\mathbf{Pol} = +0.14 \ 3. \end{aligned}$
1236.5 4	8.9 4	2109.8	3/2-	873.29	3/2-	M1+E2		3.73×10 ⁻⁴	$ \begin{aligned} &\alpha(\mathrm{K}) = 0.000320 \ 5; \ \alpha(\mathrm{L}) = 3.44 \times 10^{-5} \ 5; \ \alpha(\mathrm{M}) = 5.77 \times 10^{-6} \ 9 \\ &\alpha(\mathrm{N}) = 7.26 \times 10^{-7} \ 11; \ \alpha(\mathrm{O}) = 4.76 \times 10^{-8} \ 7; \ \alpha(\mathrm{IPF}) = 1.25 \times 10^{-5} \\ & 16 \\ &\mathrm{A}_2 = +0.15 \ 4, \ \mathrm{A}_4 = -0.10 \ 4. \end{aligned} $
1295.5 ^e 3	5 ^{ec} 4	2168.8	$(1/2^+)$	873.29	3/2-				Pol=+0.15 <i>19</i> .
1295.5 ^e 3	10 ^{ec} 3	3035.5	(m. 16 - 1	1740.0	13/2+			o 10 · · · 1 ·	
1321.6 7	14.1 6	2550.0	(7/2)+	1228.36	5/2+	M1+E2		3.43×10 ⁻⁴ 6	α (K)=0.000278 4; α (L)=2.99×10 ⁻⁵ 5; α (M)=5.02×10 ⁻⁶ 7 α (N)=6.32×10 ⁻⁷ 9; α (O)=4.15×10 ⁻⁸ 7; α (IPF)=2.9×10 ⁻⁵ 4 A ₂ =-0.166 22, A ₄ =0.007 27. Pol=+0.07 12.
1546.7 <mark>&</mark> 10	8 <i>3</i>	2420.4	$(5/2)^{-}$	873.29	$3/2^{-}$				
1739.8 4	165 5	1740.0	13/2+	0.0	9/2+	E2		3.67×10^{-4}	α (K)=0.0001605 23; α (L)=1.718×10 ⁻⁵ 24; α (M)=2.88×10 ⁻⁶ 4
									$\alpha(N)=3.63\times10^{-7}$ 5; $\alpha(O)=2.38\times10^{-8}$ 4; $\alpha(IPF)=0.000186$ 3 A ₂ =+0.369 19, A ₄ =-0.095 23. Pol=+0.62 5. $\delta: \delta(M3/E2)=+0.02$ 3
1770.4 5	32.5 10	1770.7	5/2+	0.0	9/2+	E2		3.75×10^{-4}	$\alpha(K)=0.0001552\ 22;\ \alpha(L)=1.661\times10^{-5}\ 24;\ \alpha(M)=2.79\times10^{-6}$
									α (N)=3.51×10 ⁻⁷ 5; α (O)=2.31×10 ⁻⁸ 4; α (IPF)=0.000200 3 A ₂ =+0.059 16, A ₄ =-0.033 20. Pol=+0.10 18.
1919.4 6	44.5 <i>13</i>	1919.9	7/2+	0.0	9/2+	M1+E2	+0.70 5	3.96×10^{-4}	$\alpha(K)=0.0001344 \ 19; \ \alpha(L)=1.433\times10^{-5} \ 20; \ \alpha(M)=2.40\times10^{-6}$
									α (N)=3.03×10 ⁻⁷ 5; α (O)=2.00×10 ⁻⁸ 3; α (IPF)=0.000244 4 A ₂ =-0.537 14, A ₄ =0.003 16. Pol=+0.07 7.
2026.2 ^b 10	≈3	2414.7	3/2-	388.54	$1/2^{-}$				
2153.5 7	46 2	2153.5	(11/2)+	0.0	9/2+	M1+E2	-0.80 10	4.78×10 ⁻⁴ 8	$\alpha(K)=0.0001086 \ 16; \ \alpha(L)=1.156\times 10^{-5} \ 17; \ \alpha(M)=1.94\times 10^{-6}$
									α (N)=2.44×10 ⁻⁷ 4; α (O)=1.617×10 ⁻⁸ 23; α (IPF)=0.000355 6
									$A_2 = -0.907 \ 18, A_4 = 0.110 \ 20.$ Pol=+0.20 6.

S

 $^{87}_{38}{
m Sr}_{49}$ -5

L

⁸⁶ Kr(α ,3n γ), ⁸⁴ Kr(α ,n γ) 1981Ek01,1975Ar06 (continued)										
$\gamma(^{87}\mathrm{Sr})$ (continued)										
${\rm E_{\gamma}}^{\dagger}$	Iγ [‡]	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [#]	$\delta^{\#}$	α^{d}	Comments		
2235.7 10 30	30.7 9	2235.7	9/2+	0.0 9/2+	E2(+M1)	>4	5.35×10 ⁻⁴	$\alpha(K)=0.0001012 \ 15; \ \alpha(L)=1.077\times10^{-5} \ 16; \\ \alpha(M)=1.81\times10^{-6} \ 3 \\ \alpha(N)=2.28\times10^{-7} \ 4; \ \alpha(O)=1.502\times10^{-8} \ 21; \\ \alpha(IPF)=0.000421 \ 6 \\ A_2=-0.142 \ 20, \ A_4=-0.085 \ 24. \\ Pol=-0.35 \ 14. $		
2536.7 7 3	30.6 12	2536.3	11/2-	0.0 9/2+	E1+M2	-0.18 +13-22	0.00101 6	$\alpha(K)=5.1\times10^{-5} \ 10; \ \alpha(L)=5.4\times10^{-6} \ 11; \\ \alpha(M)=9.0\times10^{-7} \ 18 \\ \alpha(N)=1.14\times10^{-7} \ 23; \ \alpha(O)=7.5\times10^{-9} \ 15; \\ \alpha(IPF)=0.00095 \ 8 \\ A_2=-0.28 \ 3, \ A_4=0.02 \ 3. \\ Pol=+0.13 \ 12. \end{cases}$		
2555.0 7 2.	22.5 9	2555.0	(9/2)-	0.0 9/2+	E1		1.04×10 ⁻³	$\alpha(K)=4.75\times10^{-5} 7; \ \alpha(L)=5.02\times10^{-6} 7; \alpha(M)=8.41\times10^{-7} 12 \alpha(N)=1.059\times10^{-7} 15; \ \alpha(O)=7.01\times10^{-9} 10; \alpha(IPF)=0.000986 14 A_2=+0.39 4, A_4=-0.04 5. Pol=-0.47 20. \delta: \ \delta(M2/E1)=\pm0.03 3$		
2704.3 [@] 20 2920.7 <i>12</i> 3154.9 ^{&} <i>15</i>		2704.3? 2920.8 3155.0	7/2+,9/2+	$\begin{array}{ccc} 0.0 & 9/2^+ \\ 0.0 & 9/2^+ \\ 0.0 & 9/2^+ \end{array}$				0. 0(112)21) *10.05 5.		

[†] Weighted average from 1981Ek01 and 1975Ar06, unless indicated otherwise.

[‡] From 1981Ek01, measured at E_{α} =14 MeV, unless indicated otherwise; other: 1975Ar06 values given without uncertainties.

[#] From γ angular distribution and γ linear polarization at 90° (1981Ek01), unless noted otherwise.

[@] From 1975Ar06 only.

6

[&] From 1981Ek01 only.

^{*a*} From γ angular distribution at $E_{\alpha}=14$ MeV in ⁸⁴Kr(α ,n γ) and A₂ at $E_{\alpha}=31$ MeV in ⁸⁶Kr(α ,3n γ) (1975Ar06).

^b Used from 1977Ba61 by 1981Ek01 for internal calibration lines.

^c The authors' statement that the I γ ratio from the 3035 and 2169 levels is approximately 1:2 appears to be a misprint. From their level scheme, and I γ =15 2 for the doublet, one gets $I_{\gamma}=10 + 7-5$ for placement from the 3035 level, and 5 -5+7 for placement from the 2168 level.

^d Additional information 1.

^e Multiply placed with intensity suitably divided.

 $x \gamma$ ray not placed in level scheme.

 $^{87}_{38}\mathrm{Sr}_{49}$ -6

 $^{87}_{38}{
m Sr}_{49}$

⁸⁶Kr(α,3nγ), ⁸⁴Kr(α,nγ) 1981Ek01,1975Ar06

 $^{87}_{38}{
m Sr}_{49}$