82 Se(9 Be,4n γ) 2014Li28

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	T. D. Johnson and W. D. Kulp(a)	NDS 129, 1 (2015)	27-Jul-2015					

2014Li28: E=46 MeV. Measured E γ , I γ , $\gamma\gamma$ coin, directional correlation of oriented nuclei (DCO) ratios using an array of nine Compton-suppressed HPGe detectors at HI-13 tandem accelerator facility of CIAE. Deduced high-spin levels, J, π , bands, multipolarity, configurations.

⁸⁷ Sr Levels	
-------------------------	--

E(level) [†]	$J^{\pi \ddagger}$	Comments		
0.0	9/2+	Configuration= $vg_{\alpha/2}^{-1}$.		
1739.6 ^{&} 4	$13/2^{+}$	Configuration= $\pi(p_{3/2}^{2-1}p_{1/2})\otimes vg_{9/2}^{-1}$.		
2595.3 [#] 7	$13/2^{-}$			
2830.5 ^{#& 6}	$15/2^{-}$			
3248.7 ^{@&} 6	$17/2^{(-)}$			
3390.2 ^{@&} 7	$19/2^{(-)}$			
3610.3 ^{@&} 7	$21/2^{(-)}$			
3685.4 7	17/2 ⁽⁺⁾	J^{π} : Assigned as (17/2) in Adopted Levels. Although the authors take the 1946 γ as a stretched quadrupole, the large uncertainty for the DCO ratio does not exclude dipole character.		
3717.2 ^{&} 8	$19/2^{(-)}$			
4171.3 ^{<i>a</i>} 7	$17/2^{(+)}$			
4440.0 ^{&} 9	23/2 ⁽⁻⁾	Configuration= $\pi(f_{5/2}^{-1}g_{9/2}) \otimes \nu g_{9/2}^{-1}$. J ^{π} : As the dipole character of the 830 γ only establishes ΔJ , this is assigned as (23/2) in Adopted Levels.		
4570.8 ^{<i>a</i>} 7	19/2 ⁽⁺⁾			
4671.2 ^{<i>a</i>} 7	$21/2^{(+)}$			
5173.1 ^{<i>a</i>} 8	$23/2^{(+)}$			
5884.7 ^{<i>a</i>} 9	$25/2^{(+)}$			
6074.2 8	$25/2^{(+)}$			
$63/3.6^{4}$ 9	$21/2^{(+)}$			
74.1^{-10}	$\frac{29}{2^{(+)}}$			
/ ++2.0 11	51/2			

[†] From least-squares fit (by compiler) to $E\gamma$ data.

* As proposed in 2014Li28 based on their DCO data, band associations and previous assignments. * Configuration= $\pi(p_{3/2}^{-1}g_{9/2}) \otimes vg_{9/2}^{-1}$. (* Configuration= $\pi(p_{3/2}^{-1}g_{9/2}) \otimes vg_{9/2}^{-1}$ or $\pi(f_{5/2}^{-1}g_{9/2}) \otimes vg_{9/2}^{-1}$.

[&] Band(A): γ cascade based on g.s.

^{*a*} Band(B): γ cascade based on $17/2^{(+)}$. Configuration= $\pi[(p_{3/2}f_{5/2}p_{1/2})^{-2}(g_{9/2}^2)] \otimes \nu g_{9/2}^{-1}$.

$\gamma(^{87}\mathrm{Sr})$

DCO ratios correspond to 90° and 140° geometry with gates on $\Delta J=2$, quadrupole transitions or $\Delta J=1$, dipole transitions. Expected DCO values are: 1.0 for $\Delta J=2$, quadrupole and 0.5 for $\Delta J=1$, dipole when gated on $\Delta J=2$, quadrupole. 1.0 for $\Delta J=1$, dipole and 1.6 for $\Delta J=2$, quadrupole when gated on $\Delta J=1$, dipole. Gates are on $\Delta J=2$, quadrupole, unless otherwise stated. The authors note that the DCO ratios can not distinguish stretched quadrupole from $\Delta J=0$ dipole transitions, and that for these cases cross checks from from crossover or parallel transitions were used to provide additional support.

82 Se(9 Be,4n γ) 2014Li28 (continued)

$\gamma(^{87}\text{Sr})$ (continued)

Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^π	E_f	J_f^π	Mult.	Comments
100.4 4	11.6 10	4671.2	$21/2^{(+)}$	4570.8	$19/2^{(+)}$		
141.5 4	33.8 18	3390.2	$19/2^{(-)}$	3248.7	$17/2^{(-)}$		DCO=0.68 18
220.1 4	25.5 13	3610.3	$21/2^{(-)}$	3390.2	$19/2^{(-)}$	(D)	DCO=0.57 7
235.2 7	1.0 3	2830.5	$15/2^{-}$	2595.3	$13/2^{-}$	(D)	DCO=0.33 13
299.4 7	6.9 7	6373.6	$27/2^{(+)}$	6074.2	$25/2^{(+)}$		
300.5 [‡] 4	14.2 6	6674.1	$29/2^{(+)}$	6373.6	$27/2^{(+)}$	(D)	DCO=0.88 22
327.0 7	7.5 4	3717.2	$19/2^{(-)}$	3390.2	$19/2^{(-)}$	(D)	DCO=0.89 19
399.5 7	6.2 7	4570.8	$19/2^{(+)}$	4171.3	$17/2^{(+)}$	(D)	DCO=0.65 11
418.2 4	58.9 28	3248.7	$17/2^{(-)}$	2830.5	$15/2^{-}$	(D)	DCO=0.54 4
488.8 7	7.6 6	6373.6	$27/2^{(+)}$	5884.7	$25/2^{(+)}$	(D)	DCO=0.49 8
501.9 4	22.5 14	5173.1	$23/2^{(+)}$	4671.2	$21/2^{(+)}$	(D)	DCO=0.47 5
711.6 4	11.8 7	5884.7	$25/2^{(+)}$	5173.1	$23/2^{(+)}$	(D)	DCO=0.40 7
767.9 [‡] 4	12.0 10	7442.0	$31/2^{(+)}$	6674.1	$29/2^{(+)}$	(D)	DCO=0.97 16
829.7 [‡] 7	9.6 10	4440.0	$23/2^{(-)}$	3610.3	$21/2^{(-)}$	(D)	DCO=0.87 7
855.7 7	5.1 3	2595.3	$\frac{13}{2^{-}}$	1739.6	$13/2^+$	(-)	DCO=1.05 44
			·				Mult.: The authors did not assign a multipolarity based on this work, but used that from 1975Ar06 and 1981Ek01.
885.4 7	< 0.5	4570.8	$19/2^{(+)}$	3685.4	$17/2^{(+)}$		
901.0 4	10.1 9	6074.2	$25/2^{(+)}$	5173.1	$23/2^{(+)}$	(D)	DCO=0.30 4
954.0 7	6.2 8	4671.2	$21/2^{(+)}$	3717.2	$19/2^{(-)}$	(D)	DCO=0.45 18
985.8 7	< 0.5	4671.2	$21/2^{(+)}$	3685.4	$17/2^{(+)}$		
1060.9 7	2.5 3	4671.2	$21/2^{(+)}$	3610.3	$21/2^{(-)}$		
1090.9 4	67.5 <i>33</i>	2830.5	$15/2^{-}$	1739.6	$13/2^{+}$		DCO=0.44 4
							Mult.: The authors did not assign a multipolarity based on this work, but used that from 1975Ar06 and 1981Ek01.
1180.6 [‡] 7	3.9 5	4570.8	$19/2^{(+)}$	3390.2	$19/2^{(-)}$		DCO=1.40 <i>30</i>
1281.0 [‡] 7	2.9.4	4671.2	$21/2^{(+)}$	3390.2	$19/2^{(-)}$		DCO=0.91.25
1322.1.7	8.5.5	4570.8	$19/2^{(+)}$	3248.7	$17/2^{(-)}$	(D)	DCO=0.41.8
1340.8 7	1.1 2	4171.3	$17/2^{(+)}$	2830.5	$15/2^{-}$	(-)	
1562.8 7	2.4 5	5173.1	$23/2^{(+)}$	3610.3	$21/2^{(-)}$		
1634.1 7	1.0 2	6074.2	$25/2^{(+)}$	4440.0	23/2(-)		
1739.6 4	100.0 17	1739.6	$13/2^{+}$	0.0	$9/2^{+}$		
1945.8 7	3.1 4	3685.4	$17/2^{(+)}$	1739.6	$13/2^{+}$		DCO=0.82 29
2431.7 7	1.7 3	4171.3	$17/2^{(+)}$	1739.6	$13/2^{+}$		

[†] Based on a general comment by 2014Li28, uncertainty=0.4 keV for $I\gamma \ge 10$, 0.7 keV for $I\gamma < 10$. [‡] For DCO value, gate is on $\Delta J=1$, dipole transition.

 $^{87}_{38}{
m Sr}_{49}$

⁸²Se(⁹Be,4nγ) 2014Li28

 $^{87}_{38}{
m Sr}_{49}$