$^{87}_{34}$ Se₅₃-1

Adopted Levels, Gammas

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	T. D. Johnson and W. D. Kulp(a)	NDS 129, 1 (2015)	27-Jul-2015				

 $Q(\beta^{-})=7466\ 4;\ S(n)=3994\ 3;\ S(p)=14753\ 4;\ Q(\alpha)=-7875\ 3$ 2012Wa38

Mass measurement: 2008HA23 (Penning trap, JYFLTRAP at IGISOL), mass excess=-66426.1 22 keV.

Identification and half-life of ⁸⁷Se were established mainly via neutron activity of bromine daughter after chemical separation from other ²³⁵U fission products, 1993Ru01. Also see 2011SO33 for production using ⁸⁶Kr (15 MeV/nucleon) + ⁶⁴Ni.

⁸⁷Se Levels

Cross Reference (XREF) Flags

A ²⁴⁸Cm SF decay

B 87 As β^- decay

E(level)	J^{π}	T _{1/2}	XREF	Comments		
0.0	(3/2+)	5.50 s 14	AB	 [¬]⟨β[¬] = 100; %β[¬]n=0.36 8 J[¬]: Systematics of the N=53 isotones suggest either 5/2⁺ or 3//2⁺. Based on shell model calculations of for the E(5/2⁺) and E(3/2⁺) for the N=53 isotones. The calculations indicate large and nearly constant B(E2) values with a significant deformation. Calculations assuming a K=3/2 band were consistent with the excitation levels and B(E2) values, thus placing the 3/2⁺ spin level below that for 5/2⁺. See 2013Rz02 for details. with shell model calculations (2013Rz02). T_{1/2}: from unweighted average of 5.9 s 2 (1970De08), 5.85 s 15 (1970Kr05), 5.41 s 10 (1971To13, supersedes 1968To06), 5.8 s 3 (1978Ze08) and 5.29 s 11 (1993Ru01) all determined from neutron counting. Other values are: 16 s 3 (1960Sa05) from ⁸⁷Br grow-in, 5.5 s 2 (1970ToZT, superseded by value from 1971To13), and 5.60 s 16 (1982Ru01, superseded by value from 1993Ru01). %β[¬] n: from unweighted average of 0.26 7 (1970De08, Adjusted by 1993Ru01; original was 0.23 7), 0.51 17 and 0.24 8 (1970Kr05), 0.17 3 (1971To13, Adjusted by 1993Ru01; original 0.16 3), and 0.60 12 (1993Ru01). The reduced-χ² value for this average is 4.02, higher than the critical value 2.37, due to discrepant values. Therefore, an unweighted average is adopted. Other values are: ≤ 0.8 (1968To06); 0.44 20 (1969WaZS); 0.18 4 (1970ToZT; see 1971To13 value by same authors); and 0.19 3 (1982Ru01). 		
91.9 2 836.5 3	$(5/2^+)$ $(7/2^+)$		AB A	J^{π} : Comparison with shell model calculations, see 2013Rz02.		
978.13	(9/2+)		Α			

[†] Suggested values from systematics and comparisons with shell model calculations presented in 2013Rz02.

 $\gamma(^{87}\text{Se})$

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.	Comments
91.9	(5/2+)	91.9 2	100	0.0 (3/2+)	M1+E2	Mult., δ : Based on angular correlations for the 91.9-886.2 keV cascade leading to $\delta = +0.53 + 31-12$ or $+5.0 +162$, -27 . Additionally, as B(M2)(W.u.)<1 from RUL, a half life can be calculated for E1+M2, assuming the lowest allowed δ of 0.41, resulting in T _{1/2} >27 μ s. As this likely would not have been observed, E1+M2 may be excluded.

Adopted Levels, Gammas (continued)

 $\gamma(^{87}\text{Se})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^{π}
836.5	$(7/2^+)$	744.6 2	100	91.9	$(5/2^+)$
978.1	$(9/2^+)$	886.2 2	100	91.9	$(5/2^+)$

Adopted Levels, Gammas

Level Scheme Intensities: Relative photon branching from each level

⁸⁷₃₄Se₅₃