History			
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	T. D. Johnson and W. D. Kulp(a)	NDS 129, 1 (2015)	27-Jul-2015

Data are from 1980Ba29, $\mathrm{E}(\mathrm{n})=0.55-2.1 \mathrm{MeV}, \gamma$ excitation functions measured and compared with Hauser-Feshbach calculations. 1972To16: $\mathrm{E}(\mathrm{n})=0.3-2.2 \mathrm{MeV}$, measured neutrons (BF3-detector) and $\gamma^{\prime} \mathrm{s}$. γ^{\prime} s above 1800 keV were not analyzed because of interference with background, ${ }^{85} \mathrm{Rb}$ lines also present. 1973Ba25: $\mathrm{E}(\mathrm{n})=0.12-1.91 \mathrm{MeV}$, neutron time-of-flight spectrometer.

${ }^{87}$ Rb Levels

E(level)	$\mathrm{J}^{\pi \dagger}$	Comments
0.0	$3 / 2^{-}$	
402.566	5/2-	
845.4210	(1/2) ${ }^{-}$	J^{π} : The authors state that the $845 \mathrm{keV} \gamma$ excitation function leads to a better fit for $1 / 2^{-}$than for $3 / 2^{-}$.
1349.6? 10		
1389.729	(3/2) ${ }^{-}$	J^{π} : $\mathrm{L}\left(\mathrm{p}, \mathrm{p}^{\prime}\right)=2$ allows $1 / 2^{-}$to $7 / 2^{-} . \gamma$ excitation rules out $1 / 2^{-}, 5 / 2^{-}$, and $7 / 2^{-}$.
1462.9915	(1/2) ${ }^{-}$	$\mathrm{J}^{\pi}: \mathrm{L}\left(\mathrm{p}, \mathrm{p}^{\prime}\right)=2$ allows $1 / 2^{-}$to $7 / 2^{-} . \mathrm{L}\left({ }^{3} \mathrm{He}, \mathrm{d}\right)=1$ limits to $1 / 2^{-}, 3 / 2^{-}$and the Hauser-Feshbach fit in 1980Ba29 narrows this to $1 / 2^{-}$.
1577.63	9/2 ${ }^{+}$	J^{π} : J^{π} is fit best by $\mathrm{J}^{\pi}=11 / 2^{+}$in the Hauser-Feshbach analysis, but $\mathrm{J}^{\pi}=9 / 2^{+}$is also allowed. Note also that the deexciting 1578γ may be from the $1 / 2^{-}, 3 / 2^{-}$level at 1578 keV , and the 1175γ is the one measured, not the 1578γ.
1740.6017	(3/2) ${ }^{-}$	$\mathrm{J}^{\pi}: \mathrm{L}\left(\mathrm{p}, \mathrm{p}^{\prime}\right)=2$ allows $1 / 2^{-}$to $7 / 2^{-} . \gamma$ excitation rules out $1 / 2^{-}, 5 / 2^{-}$, and $7 / 2^{-}$.
1950.03	(1/2) ${ }^{\text {+ }}$	
1999.3? 7	$(1 / 2)^{\ddagger}$	

${ }^{\dagger}$ From ${ }^{87} \mathrm{Rb}$ Adopted Levels, unless otherwise noted.
${ }^{\#}$ From comparison of γ excitation functions with Hauser-Feshbach calculations.

[^0]${ }^{87} \mathbf{R b}\left(\mathbf{n}, \mathbf{n}^{\prime} \gamma\right) \quad 1980 \mathrm{Ba} 29 \quad$ Legend

Level Scheme

Intensities: Relative photon branching from each level
$\ldots \quad \gamma$ Decay (Uncertain)

[^0]: ${ }^{\dagger}$ Placement of transition in the level scheme is uncertain.

