|                 | $\frac{^{192}\mathbf{Os}(^{82}\mathbf{Se},\mathbf{X}\gamma)}{^{102}\mathbf{Se}(^{102}\mathbf{Se},\mathbf{X}\gamma)}$ | 2004Zh27          |                        |
|-----------------|----------------------------------------------------------------------------------------------------------------------|-------------------|------------------------|
|                 | History                                                                                                              |                   |                        |
| Туре            | Author                                                                                                               | Citation          | Literature Cutoff Date |
| Full Evaluation | T. D. Johnson and W. D. Kulp(a)                                                                                      | NDS 129, 1 (2015) | 27-Jul-2015            |

192Os(82Se,x $\gamma$ ) with beam energy E=460 MeV. Measured E $\gamma$ , I $\gamma$ ,  $\gamma\gamma$ ,  $\gamma\gamma(\theta)$  with the 4 $\pi$  spectrometer GASP consisting of 40 Compton-suppressed, large-volume Ge detectors and of an inner BGO ball acting as a multiplicity filter and total-energy spectrometer. Deep inelastic reaction. The level scheme of 2004Zh27 is also given in 2005Lu07.

Shell model calculations suggest that particle-hole excitations across the N=50 neutron core become important after levels above spin 17/2. However, it is argued that some remaining discrepency between experimental results and shell model calculations may be due to not having accounted for collectivity. See 2004Zh27 for more details.

## <sup>87</sup>Rb Levels

| E(level) <sup>†</sup>   | Jπ‡                  | T <sub>1/2</sub> | Comments                                                                                                                                                                                                       |
|-------------------------|----------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0 <sup>#</sup>        | 3/2-                 |                  |                                                                                                                                                                                                                |
| 402.60 <sup>#</sup> 10  | $5/2^{-}$            | 0.08 ns 5        |                                                                                                                                                                                                                |
| 1577.91 <sup>#</sup> 15 | 9/2+                 | 6 ns 1           | $T_{1/2}$ : From Adopted Levels.                                                                                                                                                                               |
| 3001.0 <sup>#</sup> 4   | $(11/2)^+$           |                  | J <sup><math>\pi</math></sup> : based on systematics of surrounding levels in <sup>87</sup> Rb. (11/2) <sup>+</sup> is also listed in table I with final level for 408.0 $\gamma$ . $\pi$ from Adopted Levels. |
| 3409.03 <sup>#</sup> 18 | (13/2 <sup>+</sup> ) |                  | $J^{\pi}$ : Inferred from R(ADO) of 1831 $\gamma$ assuming (Q) to be E2. It is suggested that the somewhat smaller than expected value may be due to a loss of alignment due to higher lying isomeric states.  |
| 3644.03 <sup>#</sup> 20 | $(15/2^+)$           |                  |                                                                                                                                                                                                                |
| 4150.63 <sup>#</sup> 23 | $(17/2^+)$           |                  |                                                                                                                                                                                                                |
| 4855.0 <sup>#</sup> 4   | $(19/2^+)$           |                  |                                                                                                                                                                                                                |
| 5026.7 <sup>#</sup> 4   | $(21/2^+)$           |                  |                                                                                                                                                                                                                |
| 5481.2 <sup>#</sup> 5   | $(23/2^+)$           |                  |                                                                                                                                                                                                                |
| 6565.9 <sup>#</sup> 6   |                      |                  |                                                                                                                                                                                                                |
| 6821.7 <sup>#</sup> 6   |                      |                  |                                                                                                                                                                                                                |
|                         |                      |                  |                                                                                                                                                                                                                |

 $^{\dagger}$  From least-squares fit to Ey's (by evaluator).

<sup>‡</sup> Deduced by 2004Zh27 from values of R(ADO), wherever possible. Differences from Adopted Levels noted.

# Band(A): Yrast sequence.

|                                             |                                |                             |                                              |                                                                        | $\frac{192}{\text{Os}(^{82}\text{Se},X\gamma)} \qquad 2004\text{Zh}27 \text{ (continued)}$ |          | 04Zh27 (conti         | nued)                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|---------------------------------------------|--------------------------------|-----------------------------|----------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| $\gamma$ <sup>(87</sup> Rb)                 |                                |                             |                                              |                                                                        |                                                                                            |          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| $E_{\gamma}^{\dagger \#}$                   | Ι <sub>γ</sub> @               | E <sub>i</sub> (level)      | $\mathbf{J}_i^{\pi}$                         | $\mathbf{E}_f = \mathbf{J}_f^{\pi}$                                    | Mult. <sup>‡</sup>                                                                         | δ        | α <sup>&amp;</sup>    | Comments                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 171.7 <i>1</i><br>235.0 <i>1</i><br>255.8 5 | 33 7<br>54 11<br>7.0 14        | 5026.7<br>3644.03<br>6821.7 | (21/2 <sup>+</sup> )<br>(15/2 <sup>+</sup> ) | 4855.0 (19/2 <sup>+</sup> )<br>3409.03 (13/2 <sup>+</sup> )<br>6565.9  | (D+Q)<br>(D+Q)                                                                             |          |                       | R(ADO)=0.60 7.<br>R(ADO)=0.56 6.                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 402.6 1                                     | 100 20                         | 402.60                      | 5/2-                                         | 0.0 3/2-                                                               | M1+E2                                                                                      | -0.24 12 | 0.00411 18            | α(K)=0.00364 16; α(L)=0.000398 19; α(M)=6.6×10-5 3 α(N)=7.4×10-6 4; α(O)=3.20×10-7 13 R(ADO)=1.05 6. Mult.: From Adopted Levels and consistent with R(ADO). δ: From Adopted Levels.                                                                                                                                                                                                                                        |  |
| 408.0 5                                     | 7.0 14                         | 3409.03                     | $(13/2^+)$                                   | 3001.0 (11/2)+                                                         |                                                                                            |          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 454.5 <i>3</i><br>506 6 <i>1</i>            | 19 4<br>50 10                  | 5481.2<br>4150.63           | $(23/2^+)$<br>$(17/2^+)$                     | $5026.7 (21/2^+)$<br>$3644.03 (15/2^+)$                                | (D+Q)<br>D(+Q)                                                                             |          |                       | R(ADO)=1.0 3.<br>R(ADO)=0.79 10                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 704.4 3                                     | 26.5                           | 4855.0                      | $(17/2^{+})$<br>$(19/2^{+})$                 | $4150.63 (17/2^+)$                                                     | (D+Q)                                                                                      |          |                       | R(ADO)=0.7970.<br>R(ADO)=1.2920.                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 875.9 <i>5</i><br>1084.7 <i>5</i>           | 7.0 <i>14</i><br>7.0 <i>14</i> | 5026.7<br>6565.9            | $(21/2^+)$                                   | $\begin{array}{c} 4150.63 & (17/2^+) \\ 5481.2 & (23/2^+) \end{array}$ |                                                                                            |          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 1175.3 <i>I</i>                             | 74 15                          | 1577.91                     | 9/2+                                         | 402.60 5/2-                                                            | M2                                                                                         |          | 8.04×10 <sup>-4</sup> | $\begin{aligned} &\alpha(K) = 0.000712 \ 10; \ \alpha(L) = 7.71 \times 10^{-5} \ 11; \\ &\alpha(M) = 1.272 \times 10^{-5} \ 18 \\ &\alpha(N) = 1.447 \times 10^{-6} \ 21; \ \alpha(O) = 6.31 \times 10^{-8} \ 9; \\ &\alpha(IPF) = 6.66 \times 10^{-7} \ 10 \\ &R(ADO) = 1.02 \ 7. \\ &Mult.: \ From \ Adopted \ Levels \ and \ consistent \ with \ the \ Q \\ &multipolarity \ determined \ from \ R(ADO). \end{aligned}$ |  |
| 1211.0 5                                    | 7.0 14                         | 4855.0                      | $(19/2^+)$                                   | $3644.03 (15/2^+)$                                                     |                                                                                            |          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 1340.5 5                                    | 7.0 14                         | 6821.7<br>3001.0            | $(11/2)^+$                                   | $5481.2  (23/2^{+})$<br>1577 01 0/2 <sup>+</sup>                       |                                                                                            |          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 1831.1 <i>I</i>                             | 63 13                          | 3409.03                     | (11/2)<br>$(13/2^+)$                         | 1577.91 9/2+                                                           | (Q)                                                                                        |          |                       | R(ADO)=1.13 7.                                                                                                                                                                                                                                                                                                                                                                                                             |  |

<sup>†</sup> Cross  $\gamma$ -ray coincidences (the  $\gamma$  rays coming from the decay of the "target-like" fragments in coincidence with those coming from the "beam-like" reaction products) were used to distinguish between the different reaction partners, due to the nature of the binary reaction mechanism.

<sup>‡</sup> For the angular distribution of oriented nuclei,  $R(ADO)=I\gamma(34^{\circ})/I\gamma(90^{\circ})$ . Stretched quadrupole ( $\Delta J=2$ ) transitions have R(ADO) values  $\approx 1.4$ , whereas  $R(ADO)\approx 0.8$  for stretched dipole; stretched quadrupole transitions cannot be distinguished from  $\Delta J=0$  dipole transitions or certain M1+E2 admixtures of  $\Delta J=1$  transitions (see 2004Zh27).

<sup>#</sup> 2004Zh27 state that uncertainty ranges from 0.1-0.5 keV; Based on this statement, uncertainties are assigned with the following criterion:  $\Delta E\gamma = 0.1$  keV for  $I\gamma > 30$ ;  $\Delta E\gamma = 0.3$  keV for  $I0 \le RI \le 30$ ;  $\Delta E\gamma = 0.5$  keV for  $I\gamma < 10$ .

<sup>@</sup> 2004Zh27 quote that the uncertainties in relative intensities are within 20%.

& Additional information 1.

 $\mathbf{N}$ 



 $^{87}_{37}$ Rb $_{50}$ 

## <sup>192</sup>Os(<sup>82</sup>Se,Xγ) 2004Zh27



 $^{87}_{37}{
m Rb}_{50}$