176 Yb(23 Na,X γ) 2005Fo05

History

Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	T. D. Johnson and W. D. Kulp(a)	NDS 129, 1 (2015)	27-Jul-2015	

Includes 173 Yb(24 Mg,X γ) and 208 Pb(18 O,X γ).

⁸⁷Rb isotope produced in fission of compound nucleus in three independent experiments: 1. 173 Yb(24 Mg,X γ) E=134.5 MeV; 2. 176 Yb(23 Na,X γ) E=129 MeV; 3. 208 Pb(18 O,X γ) E=91 MeV.

Measured E γ , I γ , $\gamma\gamma$, fragment- γ coin with the Gammasphere array. For the first experiment, the array consisted of 92 Compton-suppressed large volume HPGe detectors while in the latter two, the number of Ge detectors was increased to 100.

⁸⁷Rb Levels

E(level) ^{†@}	Jπ&	T _{1/2}	Comments
0.0	3/2-		J^{π} : From Adopted Levels.
402.50 19	5/2-		J^{π} : From Adopted Levels.
1578.01 25	9/2+	6 ns 1	$T_{1/2}$: From Adopted Levels.
			Earlier Configuration, in the literature, was proposed as:
			$85\%[(g_{9/2}\otimes 0^+)]+14\%[(g_{9/2}\otimes 2^+)]; 2005Fo05 \text{ suggest a small admixture of } p_{3/2}\otimes 3^-$ based upon observation of proposed E3 transition from isomer.
3001.7 5	$(11/2)^+$		Proposed configuration= $\pi g_{9/2} \otimes 2^+$.
			J^{π} : From Adopted Levels.
3098.0 5	$(11/2, 13/2)^+$		J^{π} : Based on L=5 in (p,p') and transition to 9/2 ⁺ See Adopted Levels.
3409.0 4	$(13/2^+)$		Proposed configuration= $\pi g_{9/2} \otimes 2^+$.
3643.8 4	$(15/2, 17/2^+)$		Proposed configuration= $\pi g_{9/2} \otimes 4^+$.
			J^{π} : (15/2 ⁺) in Adopted Levels.
4090.5 [‡] 12			
4150.1 [‡] 4			
4314.6 [‡] <i>15</i>			
4854.2 [‡] 5			J^{π} : (19/2 ⁺) in Adopted Levels.
5025.7 [‡] 5			
5480.0 [‡] 7			
5789.5 [‡] 11			
6345.1 [‡] 12			
6564.7 [#] 8			
6820 3 [#] 8			
7241.1 # 10			
/241.1" 10			

[†] Possible origin of states above 3644 level suggested in discussion of 2005Fo05.

[±] Proposed configuration= $\pi g_{9/2} \otimes [5^-, 6^-, 7^- \text{ and/or } \nu g_{9/2}^{-1} d_{5/2}].$

[#] Possible configuration= $[\pi f_{5/2}^{-1} g_{9/2}^2] \otimes [\nu g_{9/2}^{-1} d_{5/2}].$

[@] From least-squares fit to $E\gamma$'s (by evaluators).

& Assignments proposed to levels above $9/2^+$ isomer based upon comparison with experimental and theoretical results on states energetically comparable in 85 Kr and 89 Y as well with shell model calculations and suggested coupling configurations.

				176 Yb(23 Na,X γ) 2005Fo05 (continued)			ntinued)	
					$\gamma(^{87}\text{Rb})$			
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.	α@	Comments
171.5 2 224.1 10 234.8 2 255.4 6	22 6 <2 55 8 5 2	5025.7 4314.6 3643.8 6820.3	(15/2,17/2 ⁺)	4854.2 4090.5 3409.0 6564.7	(13/2+)			
402.5 2 407.3 6 420.8 6	5 <i>I</i> 5 <i>2</i>	402.50 3409.0 7241.1	5/2 (13/2 ⁺)	0.0 3001.7 6820.3	$(11/2)^+$			Mult.: transition may be part of sequence of strong M1 transitions, similar to that which is observed above 7 MeV in ⁸⁹ Y.
454.2 5 506.2 2 545.9 10 704.0 2 865.1 10 876.0 6 935 3 10	20 3 48 5 3 1 22 6 2.5 5 7 2 2 5 8	5480.0 4150.1 3643.8 4854.2 6345.1 5025.7 5789.5	(15/2,17/2 ⁺)	5025.7 3643.8 3098.0 4150.1 5480.0 4150.1 4854.2	$(15/2,17/2^+)$ $(11/2,13/2)^+$			
1052.1 <i>10</i> 1084.4 <i>6</i>	2.5 6 4 <i>1</i> 6 2	4150.1 6564.7		3098.0 5480.0	$(11/2, 13/2)^+$			
1088.8 <i>10</i> 1175.5 2	2.2 / 77 [#] 9	4090.3	9/2+	402.50	(11/2)* 5/2 ⁻	M2	8.03×10 ⁻⁴ 12	$\alpha(K)=0.000711 \ 10;$ $\alpha(L)=7.70\times10^{-5} \ 11;$ $\alpha(M)=1.272\times10^{-5} \ 18$ $\alpha(N)=1.446\times10^{-6} \ 21;$ $\alpha(O)=6.31\times10^{-8} \ 9;$ $\alpha(PE)=6 \ 70\times10^{-7} \ 10$
1210.6 6 1340.5 6 1423.7 6 1520.0 5 1539.2 10	5 2 5 2 8 2 11 3 3 1	4854.2 6820.3 3001.7 3098.0 6564.7	$(11/2)^+$ $(11/2,13/2)^+$	3643.8 5480.0 1578.01 1578.01 5025.7	(15/2,17/2 ⁺) 9/2 ⁺ 9/2 ⁺			<i>u</i> (III)=0.70×10 10
1578.0 <i>5</i>	11 [#] 3	1578.01	9/2+	0.0	3/2-	[E3]	4.08×10 ⁻⁴ 6	$\begin{aligned} &\alpha(\mathbf{K}) = 0.000319 \ 5; \\ &\alpha(\mathbf{L}) = 3.45 \times 10^{-5} \ 5; \\ &\alpha(\mathbf{M}) = 5.69 \times 10^{-6} \ 8 \\ &\alpha(\mathbf{N}) = 6.45 \times 10^{-7} \ 9; \\ &\alpha(\mathbf{O}) = 2.78 \times 10^{-8} \ 4; \\ &\alpha(\mathbf{IPF}) = 4.89 \times 10^{-5} \ 7 \\ \mathbf{E}_{\gamma}: \text{ this transition was suggested} \\ &\text{as depopulating a } (1/2,3/2)^{-} \\ &\text{state } 1578.05 \text{ level in the} \\ &\text{literature. } 2005Fo05 \text{ note that} \\ &\text{the two levels at } 1578.05 \text{ and} \\ &1577.9 \text{ cannot be resolved} \\ &\text{based either on energy or the} \\ &\text{branching ratios (which are} \\ &\text{almost the same for both} \\ &\text{levels), however, the} \\ &\text{assignment of this } \gamma \text{ ray to} \\ &(1/2,3/2)^{-} \text{ level seems unlikely} \\ &\text{as the population of such a} \\ &\text{non-yrast state in the fission of} \\ &\text{the compound nuclei is not} \end{aligned}$

				1′	⁷⁶ Yb(²³	³ Na,Xγ) 2005Fo05 (continued)
						γ (⁸⁷ Rb) (continued)
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Comments
1831.0 2	57 9	3409.0	(13/2+)	1578.01	9/2+	expected. Mult.: E3 multipolarity proposed for this γ ray as it is seen in coincidence with all the transitions above the isomer.

[†] 2005Fo05 quote uncertainties on γ-ray energies as varying from 0.2-0.5 keV for strong transitions and from 0.6-1.0 keV for the weaker ones. Therefore the following uncertainties are assigned: 0.2 keV for $I\gamma$ >20, 0.5 keV for $I\gamma$ =10-20, 0.6 keV for $I\gamma$ =5-10 and 1.0 for $I\gamma < 5$.

[±] Obtained from 176 Yb(23 Na,X γ) reaction in second experiment. [#] Obtained from double gate on known transitions of 106 Ru complementary fragment from fission of 199 Tl in second experiment.

[@] Additional information 1.

