58 Ni(32 S,2pn γ), 40 Ca(50 Cr,2pn γ) 1991Wi15

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	T. D. Johnson and W. D. Kulp(a)	NDS 129, 1 (2015)	27-Jul-2015

 58 Ni(32 S,2pn γ) with E(32 S)=110 MeV and 40 Ca(50 Cr,2pn) with E(50 Ca)=170 MeV. Measured $\gamma\gamma$ and $n\gamma\gamma$ coincidences with five Compton-suppressed Ge detectors, one neutron detector, and four charged-particle telescopes as well as a twenty Ge detector array. Level lifetimes were measured with the recoil-distance Doppler-shift and Doppler-shifted line-shape methods. Angular distributions are given for 14 γ' s.

1993IDZY: ⁵⁸Ni(³²S,2pnγ) with E(³²S)=110-125 MeV Experiment done at NORDBALL with a Si Ball and a Neutron wall with 15 Compton-suppressed Ge detectors. These were preliminary results with analysis in progress. As the proposed level scheme is largely in agreement with 1991WI15 with the addition of a few new levels, it is included in this dataset. Where there are discrepencies, data from 1991WI15 is presented. Several other levels are are indicated in the report which appear to conflict with the published data and are not shown. Since the report from 1993IDZY indicates that these results are tentative, they are not included in the adopted set. Clearly, more work needs to be done on this isotope to clarify the situation.

⁸⁷Mo Levels

E(level) ^{†‡}	Jπ#	T _{1/2}	Comments
0.@	$(7/2^+)$	14.02 s 26	
31.56 [@] 6	$(9/2^+)$		
786.52 [@] 19	$(11/2^+)$		
847 ^a			J^{π} : Proposed as (9/2 ⁻) 1993IdZY based on systematics.
864.54 [@] 9	$(13/2^+)$	14 ps 4	
1469 ^a	(15/0+)		J^{n} : Proposed as $(11/2^{-})$ in 19931dZY based on systematics.
17/3.00 14	$(15/2^{+})$		
1863.57° 10	$(1^{\prime}/2^{+})$	14 ps 4	
1969.83 [∞] 14	(15/2)		J^{π} : proposed as (13/2 ⁻) in 1993IdZY The evaluator notes that the presence of the 1123 transition does appear to make this proposal somewhat more likely assuming the proposed (9/2 ⁻) assignment for the 847 keV level. Based as that is on preliminary report data, the older adopted J ^{π} is kept.
2283.70 ^{&} 11	(17/2)		
2695.98 ^{&} 13	(19/2)		
2742.17 [@] 12	$(21/2^+)$	1.2 ps 5	
2770 ^{<i>a</i>}			
2963.3 16	$(21/2^+)$		
3134.97 ^{c} <i>13</i> 3200 ^{<i>a</i>}	(21/2)		
3382.62 [@] 13	$(23/2^+)$		
3600.33 [@] 13	$(25/2^+)$	1.1 ps 5	
3618.75 ^{&} 14 3780 ^a 3919 ^a	(23/2)		
4161.34 ^{&} 15	(25/2)		
4384.82 [@] 17	$(27/2^+)$		
4550.72 [@] 16	$(29/2^+)$		
4713.09 ^{&} 17	(27/2)		
5253.77 ^{&} 19	(29/2)		
5302.51 [@] 21	$(31/2^+)$		
5670.12 [@] 19	$(33/2^+)$	0.46 ps 7	
5857.66 ^{&} 23	(31/2)	-	

58 Ni(32 S,2pn γ), 40 Ca(50 Cr,2pn γ) 1991Wi15 (continued)

⁸⁷Mo Levels (continued)

E(level) ^{†‡}	$J^{\pi \#}$	T _{1/2}
6368.35 ^{&} 23	(33/2)	
6945.82 [@] 21	$(37/2^+)$	0.24 ps 7
8354.95 [@] 23	$(41/2^+)$	<0.3 ps
10004.4 [@] 3	$(45/2^+)$	
11838.4 [@] 7	$(49/2^+)$	

[†] From least-squares fit to γ energies not using E γ data of 1993IDZY as this was a secondary reference.

[‡] Taken from 1991Wi15, unless otherwise noted. [‡] Taken from 1991Wi15, unless otherwise noted. [#] From γ -ray multipolarities, decay patterns, and expected band structure. [@] Band(A): yrast band based on ground state. [&] Band(B): second band, probably negative parity.

^{*a*} From 1993IdZY.

				⁵⁸ 1	58 Ni(32 S,2pn γ), 40 Ca(50 Cr,2pn γ)			5 (continued)
						$\gamma(^{87}Mo)$		
$E_{\gamma}^{\ddagger \#}$	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f J ²	f^{π} Mult. [†]	δ	α &	Comments
31.55 6	180	31.56	(9/2+)	0. (7/2	+) M1+E2	0.27 +18-13	13.6 48	$ \frac{\alpha(K)=6.08 \ 10; \ \alpha(L)=0.736 \ 12; \ \alpha(M)=0.1319 \ 20}{\alpha(N)=0.0199 \ 3; \ \alpha(O)=0.001085 \ 17} α: Symmetrized from α$ α(exp) = 11.5 +69-31 from intensity balance in 58Ni(32S,2pn). Mult.,δ: From α(exp). Iγ: uncertainty given as +120-90. Mult.,δ: from α(exp) of 11.5 +69-31 calculated from intensity balance in 58Ni(32S,2pn). A small mixture of E2, δ=0.05 +12-4, is allowed. $
165.87 <i>15</i> 217.78 7 *221.6 3 *274.6 3 *290.5 3	36 6 48 6	4550.72 3600.33	(29/2 ⁺) (25/2 ⁺)	4384.82 (27/ 3382.62 (23/	2 ⁺) D 2 ⁺) D(+Q)			Angular distribution: $A_2 = -0.47$ 10, $A_4 = +0.21$ 18. Angular distribution: $A_2 = -0.38$ 7, $A_4 = -0.07$ 10.
313.76 9 367.61 9 412.23 7 420.22 6	35 6 41 5 219 <i>1</i> 6 114 7	2283.70 5670.12 2695.98 2283.70	(17/2) (33/2+) (19/2) (17/2)	1969.83 (15/ 5302.51 (31/ 2283.70 (17/ 1863.57 (17/	2) D (+Q) D (+Q) D (+Q) D (+Q) D			Angular distribution: $A_2 = -0.27$ 5, $A_4 = -0.01$ 7. Angular distribution: $A_2 = -0.41$ 7, $A_4 = +0.05$ 11. Angular distribution: $A_2 = -0.57$ 3, $A_4 = -0.00$ 4. Angular distribution: $A_2 = +0.46$ 5, $A_4 = -0.10$ 8 consistent with $\Delta I = 0$ (1991Wi15).
439.05 9 483.81 8 ^x 490.9 3	96 12 52 12	3134.97 3618.75	(21/2) (23/2)	2695.98 (19/ 3134.97 (21/	(2) (2)			
501 [@] 504 [@]		1969.83 3200	(15/2)	1469 2695.98 (19/	2)			E_{γ} : Likely the unplaced 504.3 <i>3</i> keV transtion seen reported in 1991Wi15
510.54 <i>11</i> 540.57 <i>20</i> 542.27 <i>20</i> 551.72 <i>20</i> 580 [@]	270 54 55 20 55 20 58 21	2283.70 5253.77 4161.34 4713.09 3780	(17/2) (29/2) (25/2) (27/2)	1773.00 (15/ 4713.09 (27/ 3618.75 (23/ 4161.34 (25/ 3200	2 ⁺) (D) 2) 2) 2) 2)			 Angular distribution: A₂=-0.10 5, A₄=-0.06 6. I_γ: Doublet with a 540 keV transition in ⁸⁴Zr, 1991Wi15. I_γ: Doublet with a 540 keV transition in ⁸⁴Zr, 1991Wi15. E_γ: Likely the unplaced 580.4 <i>3</i> keV transition seen in 1991Wi15.
622 [@] 640.51 7 751.9 8 755.3 4 784.46 14 787.1 4 800 [@]	63 8 40 20 40 20	1469 3382.62 5302.51 786.52 4384.82 786.52 2770	$\begin{array}{c} (23/2^+) \\ (31/2^+) \\ (11/2^+) \\ (27/2^+) \\ (11/2^+) \end{array}$	847 2742.17 (21/ 4550.72 (29/ 31.56 (9/2 3600.33 (25/ 0. (7/2 1969.83 (15/	2 ⁺) D 2 ⁺) +) 2 ⁺) +) 2)			Angular distribution: $A_2 = -0.43$ 6, $A_4 = +0.15$ 9.
815 [@] 832.7 ^a 5	5 5	847 2695.98	(19/2)	31.56 (9/2 1863.57 (17/	(+) (2+)			E_{γ} : Likely the 814.5 3 keV transition reported in 1991Wi15.

ω

 $^{87}_{42}Mo_{45}$ -3

L

From ENSDF

 $^{87}_{42}Mo_{45}$ -3

				-	⁵⁸ Ni(³² S,2	2pnγ), ⁴⁰ Ca	$a(^{50}$ Cr,2pn $\gamma)$ 1	1991Wi15 (continued)
γ ⁽⁸⁷ Mo) (continued)								
Ε _γ ‡#	Iγ	E _i (level)	\mathbf{J}_i^{π}	E_{f}	${f J}_f^\pi$	Mult. [†]	α ^{&}	Comments
832.95 6	1000	864.54	(13/2+)	31.56	(9/2+)	E2	1.19×10 ⁻³ 2	α (K)=0.001046 <i>15</i> ; α (L)=0.0001200 <i>17</i> ; α (M)=2.14×10 ⁻⁵ <i>3</i> α (N)=3.25×10 ⁻⁶ <i>5</i> ; α (O)=1.79×10 ⁻⁷ <i>3</i> Angular distribution: A ₂ =+0.39 <i>2</i> , A ₄ =-0.13 <i>3</i> .
^x 842.5 <i>3</i> 851.34 8	179 <i>16</i>	3134.97	(21/2)	2283.70	(17/2)	E2	1.13×10 ⁻³ 2	$\alpha(K)=0.000992 \ 14; \ \alpha(L)=0.0001136 \ 16; \ \alpha(M)=2.03\times10^{-5} \ 3$ $\alpha(N)=3.07\times10^{-6} \ 5; \ \alpha(O)=1.697\times10^{-7} \ 24$
858.11 6	216 <i>12</i>	3600.33	(25/2+)	2742.17	(21/2 ⁺)	E2	1.11×10 ⁻³ 2	Angular distribution: $A_2 = +0.5$ <i>I</i> , $A_4 = -0.17$ <i>I</i> 3. $\alpha(K) = 0.000973$ <i>I</i> 4; $\alpha(L) = 0.0001114$ <i>I</i> 6; $\alpha(M) = 1.99 \times 10^{-5}$ 3 $\alpha(N) = 3.01 \times 10^{-6}$ 5; $\alpha(O) = 1.665 \times 10^{-7}$ 24 Angular distribution: $A_4 = +0.20$ 5; $A_4 = -0.16$ 7
878.60 <i>6</i>	501 <i>21</i>	2742.17	(21/2+)	1863.57	(17/2 ⁺)	E2	1.05×10^{-3}	Angular distribution: $A_2 = +0.39$ 5, $A_4 = -0.16$ 7. $\alpha(K) = 0.000919$ 13; $\alpha(L) = 0.0001051$ 15; $\alpha(M) = 1.88 \times 10^{-5}$ 3 $\alpha(N) = 2.84 \times 10^{-6}$ 4; $\alpha(O) = 1.574 \times 10^{-7}$ 22 Angular distribution: $A_2 = +0.39$ 3, $A_3 = -0.17$ 4
907.7 2		1773.00	(15/2+)	864.54	(13/2 ⁺)			E_{γ} : level energy difference is 908.45 <i>11</i> . E The significant deviation of the energy level E and contribution to a large chi-square fit to the E level energies suggest a larger uncertainty than given
922.63 9	103 19	3618.75	(23/2)	2695.98	(19/2)			uncertainty than given.
950.39 <i>11</i>	148 <i>13</i>	4550.72	(29/2+)	3600.33	(25/2+)	E2	8.69×10 ⁻⁴ 13	α (K)=0.000764 <i>11</i> ; α (L)=8.69×10 ⁻⁵ <i>13</i> ; α (M)=1.550×10 ⁻⁵ <i>22</i> α (N)=2.35×10 ⁻⁶ <i>4</i> ; α (O)=1.309×10 ⁻⁷ <i>19</i> Angular distribution: A_2 =+0.29 7 A_4 =+0.06 <i>11</i>
986.7 2		1773.00	$(15/2^+)$	786.52	$(11/2^+)$			11150000000000000000000000000000000000
999.12 6	669 25	1863.57	(17/2+)	864.54	(13/2+)	E2	7.74×10 ⁻⁴ 2	$\alpha(K)=0.000681 \ 10; \ \alpha(L)=7.72\times10^{-5} \ 11; \ \alpha(M)=1.377\times10^{-5} \ 20 \ \alpha(N)=2.09\times10^{-6} \ 3; \ \alpha(O)=1.168\times10^{-7} \ 17 \ Angular distribution: \ A_2=+0 \ 34 \ 2 \ A_4=-0 \ 13 \ 3$
1026.49 <i>11</i> ^x 1048.8 <i>5</i>	106 <i>21</i>	4161.34	(25/2)	3134.97	(21/2)			
1092.48 15	73 30	5253.77	(29/2)	4161.34	(25/2)			
1094.28 <i>15</i> 1099.7 <i>1</i>	80 <i>30</i> 65 8	4713.09 2963.3	(27/2) $(21/2^+)$	3618.75 1863.57	(23/2) (17/2 ⁺)			E_{γ} : In Table 1 of 1991Wi15, this γ transition was shown depopulating a level at 3842 keV and feeding a $17/2^+$ level. However, this would feed the 2743 keV level at $21/2^+$. On the other hand, their level scheme shows this transition to come from the 2963 keV level, and this is in agreement with the level scheme shown in 1993Id7Y
1104.1 <i>3</i>	22 6	1969.83	(15/2)	864.54	(13/2 ⁺)			E_{γ} : level energy difference is 1105.28 <i>11</i> . E The significant deviation of the energy level E and contribution to a large chi-square fit to the E level energies suggest a larger uncertainty than given.
1114.57 12	61 20	6368.35	(33/2)	5253.77	(29/2)		C 01. 10-1 C	
1119.39 9	1799	5670.12	(33/2+)	4550.72	(29/2+)	(E2)	6.01×10 ⁻⁴ 9	$\alpha(K) = 0.000528 \ 8; \ \alpha(L) = 5.95 \times 10^{-3} \ 9; \ \alpha(M) = 1.062 \times 10^{-3} \ 15$ $\alpha(N) = 1.614 \times 10^{-6} \ 23; \ \alpha(O) = 9.07 \times 10^{-8} \ 13; \ \alpha(IPF) = 1.130 \times 10^{-6} \ 17$
1123 ^w 1144 57 15	70.35	1969.83 5857.66	(15/2) (31/2)	847 4713 00	(27/2)			
1177.0/10	10 55	2027.00	$(J_1/2)$	T/13.09	(41/4)			

4

From ENSDF

 $^{87}_{42}\mathrm{Mo}_{45}\text{--}4$

					⁵⁸ Ni(³² S	,2pn γ) , ⁴⁰ (Ca(⁵⁰ Cr,2pnγ)	1991Wi15 (continued)			
γ ⁽⁸⁷ Mo) (continued)											
$E_{\gamma}^{\ddagger \#}$	Iγ	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult. [†]	α ^{&}	Comments			
1176 [@]		3919		2742.17	$(21/2^+)$						
1275.69 9	52 13	6945.82	(37/2 ⁺)	5670.12	(33/2 ⁺)	(E2)	4.74×10 ⁻⁴ 7	$\alpha(K)=0.000399\ 6;\ \alpha(L)=4.47\times10^{-5}\ 7;\ \alpha(M)=7.98\times10^{-6}\ 12$ $\alpha(N)=1.214\times10^{-6}\ 17;\ \alpha(O)=6.86\times10^{-8}\ 10;\ \alpha(IPF)=2.10\times10^{-5}\ 3$			
1409.12 11	39 17	8354.95	$(41/2^+)$	6945.82	$(37/2^+)$	(E2)	4.23×10 ⁻⁴ 6	$\alpha(\mathbf{K})=0.000325 5; \alpha(\mathbf{L})=3.63\times10^{-5} 5; \alpha(\mathbf{M})=6.47\times10^{-6} 9$ $\alpha(\mathbf{K})=0.85\times10^{-7} 14; \alpha(\mathbf{C})=5.60\times10^{-8} 8; \alpha(\mathbf{RE})=5.34\times10^{-5} 8$			
1649.41 <i>11</i> 1834.0 <i>6</i>	22 <i>10</i> 15 <i>10</i>	10004.4 11838.4	(45/2 ⁺) (49/2 ⁺)	8354.95 10004.4	(41/2 ⁺) (45/2 ⁺)			$a(10) = 7.65 \times 10^{-14}, a(0) = 5.00 \times 10^{-6}, a(111) = 5.54 \times 10^{-6}$			

[†] Assigned by evaluator from angular distributions and authors' comments (1991WI15). Quadrupole transitions are assumed by the evaluator to be E2 rather than M2.

M2.
[‡] From 1991Wi15 unless otherwise noted.
[#] Uncertainties assumed to be 1 keV if unavailable.
[@] From 1993IdZY.
[&] Additional information 1.
^a Placement of transition in the level scheme is uncertain.
^x γ ray not placed in level scheme.

 $^{87}_{42}{
m Mo}_{45}$

⁸⁷₄₂Mo₄₅

58 Ni(32 S,2pn γ), 40 Ca(50 Cr,2pn γ) 1991Wi15

⁸⁷₄₂Mo₄₅