		History		
	Туре	Author	Citation	Literature Cutoff Date
	Full Evaluation	T. D. Johnson and W. D. Kulp(a)	NDS 129,1 (2015)	27-Jul-2015
$Q(\beta^{-})=3888.27\ 25;\ S$	(n)=5515.17 25; S	(p)=12366 3; $Q(\alpha)$ =-7794 3 201	2Wa38	

⁸⁷Kr Levels

From ⁸⁸Rb decay, 95.9% *3* of the delayed neutron from levels in ⁸⁸Kr go to the ⁸⁷Kr ground state and 4.1% *3* go to the first excited level at 532 keV.

%IT: for the levels above the neutron binding energy, the γ decay fractions were computed from $g\Gamma(n)$ and $g\Gamma(n)\Gamma(\gamma)/\Gamma$ in (n,X).

Cross Reference (XREF) Flags

		A B C D	86 Kr(d,p),(j 86 Kr(n, γ) E 86 Kr(n, X) 87 Br β^- dec	$ \begin{array}{rcl} \text{pol d,p}) & \text{E} & {}^{88}\text{Br }\beta^{-}\text{n} \text{ decay} \\ \text{E} = \text{th} & \text{F} & {}^{208}\text{Pb}({}^{18}\text{O},\text{F}\gamma) \\ & \text{G} & {}^{238}\text{U}({}^{82}\text{Se},\text{X}\gamma), {}^{192}\text{Os}({}^{82}\text{Se},\text{X}\gamma) \\ \text{cay} & \text{H} & {}^{2}\text{H}({}^{86}\text{Kr},\text{p}) \end{array} $
E(level) [†]	J ^{π‡#}	T _{1/2} @	XREF	Comments
0.0 ^c	5/2+	76.3 min 5	AB DEFGH	 %β⁻=100 μ=-1.023 2; Q=-0.30 3 From laser spectroscopy (1995Ke04), δ<r<sup>2>_{86,87} = 0.125 fm²; authors give three associated uncertainty components.</r<sup> J^π: from laser spectroscopy (1995Ke04), L=2 in (d,p) and analyzing power in (pol d,p). T_{1/2}: weighted average of 76.3 m 6 (1972Eh02, β decay measurements), 76.4 m 10 (1964Cl01, mass spectrometer measurements), 78 m 2 (1949Ko13), and 74 m 2 (1937Sn02). This average has a reduced-χ² of 0.68. The weighted average is the same if the two older values are omitted; then the reduced-χ² is 0.01. μ: from 2011StZZ evaluation, based on laser spectroscopy data of 1995Ke04
531.99 4	$1/2^{+}$		AB DEFGH	J^{π} : L=0 in (d,p).
1419.65 ^{<i>c</i>} 4 1476.12 5	$(7/2^+)$ $3/2^+, 5/2^+$		DFG ABDH	J^{π} : From in-beam spectroscopy (2006Po09, 2007De37), γ to 5/2 ⁺ . XREF: H(1465). J^{π} : L=2 in (d,p). The direct feed from 1/2 ⁺ in (n, γ) makes the 5/2 ⁺ alternative less likely.
1570 <i>3</i>	$(1/2^+)$		Н	J^{π} : L-transfer of (0) in ${}^{2}H({}^{86}Kr,p)$.
1577.59 4	9/2+		A D FG	J ^{π} : From in-beam spectroscopy (2006Po09, 2007De37), γ to 5/2 ⁺ .
1841.42 ^{&c} 5	$(9/2^+)$		D FG	
1881.19 6	3/2+,5/2+		A D H	J^{π} : from L=(2) in (d,p) and isobaric analog of the 15854 level in ⁸⁷ Rb J^{π} =(3/2 ⁺ ,5/2 ⁺), confirmed by agreement of spectroscopic factors in ⁸⁶ Kr(d,p) and ⁸⁶ Kr(p,p') IAR, and L=2 in ² H(⁸⁶ Kr,p).
2005.42 4	3/2+,5/2+		AB D H	XREF: H(1997). I^{π} : L=2 in (d p)
2071.65 5			D	
2086.7 6	$1/2^{+}$		A D H	J^{π} : L=0 in ² H(⁸⁶ Kr,p).
2105.37 ^{&c} 8	$(11/2^+)$		D FG	
2122.53 6	3/2+,5/2+		ABD H	XREF: H(2112).
				J^{π} : L=2 in (d,p) and L=2 in ² H(⁸⁶ Kr,p). The direct feed from 1/2 ⁺ in (n, γ) makes the 5/2 ⁺ alternative less likely.

⁸⁷Kr Levels (continued)

E(level) [†]	$J^{\pi \ddagger \#}$		XREF	,	Comments
2258.67 7	11/2-	A	D F	GH	XREF: H(2250).
2200.02 6	(1/2+)		P		J^{π} : from L=5 in ² H(⁸⁶ Kr,p) and isobaric analog of the 16240 level in ⁸⁷ Rb ($J^{\pi}=9/2^{-},11/2^{-}$), confirmed by agreement of spectroscopic factors in ⁸⁶ Kr(d,p) and ⁸⁶ Kr(p,p') IAR. Confirmed 11/2 ⁻ with in-beam spectroscopy (2006Po09) from the expected yrast nature.
2300.02 0	$(1/2^{+})$	A	D	н	XREF: A(2277)H(2277). I^{π} · L=(0) in (d p) and ² H(⁸⁶ Kr p)
2329.9 <i>6</i> 2369.49 7			D D		
2371.8 <i>4</i> 2372.35 <i>6</i>	1/2,3/2 $(3/2^+,5/2^+)$	B	B D		J^{π} : primary γ in thermal neutron capture from $J^{\pi}=1/2^+$. J^{π} : from γ 's to $1/2^+$ and $5/2^+$ levels. the 952.66 γ to a $(7/2^+)$ weakly rules out $1/2^+$ and suggests $\pi=+$ for $3/2$.
2451.91 5 2462.86 <i>10</i> 2498.59 5 2513.75 9			D D D D		
2518.91 9 2547.1 3 2565.9 6 2605.77 16	7/2+,9/2+	A	D D D D	Н	J^{π} : L=4 and log $f^{1u}t=9.4$ from $J^{\pi}=5/2^{-}$.
2614.49 ^c 25 2641.74 6 2715.24 10 2757.69 8	(13/2 ⁺) ^b		F D D D		
2787.34 11	3/2+,5/2+	A	D	H	XREF: H(2775). J^{π} : L=2 in (d,p) and ² H(⁸⁶ Kr,p).
2821.06 6 2832.1 6		A	D D	H	 XREF: A(2823)H(2823). J^π: L=2 in (d,p) and ²H(⁸⁶Kr,p) implies 3/2⁺ or 5/2⁺ for the 2832 or 2836 level, or both levels.
2836.55 5	(3/2,5/2,7/2)	A	D	H	XREF: A(2823)H(2823). J^{π} : log <i>ft</i> =6.7, log <i>f</i> ^{1<i>u</i>} <i>t</i> =8.3 from 5/2 ⁻ , γ to 5/2 ⁺ . L=2 in (d,p) and ² H(⁸⁶ Kr,p) implies 3/2 ⁺ or 5/2 ⁺ for the 2832 or 2836 level, or both levels.
2863.26 10			D		
3020.81 <i>16</i>		A	D	H	XREF: A(3015)H(3021).
3026.84 4		A	D	Н	J^{π} : L=2 in (d,p) implies $3/2^+$ or $5/2^+$ for the 3020 or 3026 level, or both levels. XREF: A(3015)H(3021).
					J^{α} : L=2 in (d,p) and ² H(⁶⁰ Kr,p) implies $3/2^{+}$ or $5/2^{+}$ for the 3020 or 3026 level, or both levels.
3080.78 15			D		
3142.91 15			ע ח		
3217.86 5			D	H	XREF: H(3229). J^{π} : L=(0+2) in ² H(⁸⁶ Kr,p) implies 1/2 ⁺ and 3/2 ⁺ ,5/2 ⁺ for the 3217 or 3226 level, or
3225.97 10			D	Н	both levels. XREF: H(3229). J ^π : L=(0+2) in ² H(⁸⁶ Kr,p) implies 1/2 ⁺ and 3/2 ⁺ ,5/2 ⁺ for the 3217 or 3226 level, or both levels.
3237.19 <i>10</i> 3256.90 <i>8</i> 3288.4 <i>3</i> 3297.13 <i>21</i> 3301.9 <i>4</i>		A A	D D D D		XREF: A(3223). XREF: A(3237).
3361.9 7			D		

⁸⁷Kr Levels (continued)

E(level) [†]	J ^{π‡#}	XRE	EF	Comments
3434.76 11		D		
3444.9 <i>3</i>		D		
3525.26 25	$(15/2^{-})$		F	J^{π} : From angular correlation and yrast arguments in ²⁰⁸ Pb(¹⁸ O,F γ).
3559.7 <i>3</i>		A D		
3599.00 15		D		
3645.52 /	3/2 ,5/2,7/2	D		$J^{*}: \log ft = 7.1 \text{ from } 5/2 , \gamma \text{ to } (7/2^{+}).$
3680 1 5		ע		
3777 4 6		ם ח		
3807.03 10		D		
3809.41 15		D		
3827 10		Α		XREF: A(3819).
3874.18 8	3/2,5/2,7/2	A D		J^{π} : log ft=6.9 from 5/2 ⁻ , γ to 7/2 ⁺ .
3909.8 7	1	D		
3914.3 [°] 4	$(15/2^+)^{D}$		F	
3917.16 10	3/2,5/2,7/2	D		J^{π} : log ft=6.5, log f ^{1u} t=7.9 from 5/2 ⁻ , γ to 5/2 ⁺ .
3923.0 6		D		
4027.2 5	h	D		
4088.2 3	$(17/2^{-})^{o}$	_	F	
4136.3 4	2/2(-) = 5/2 = 7/2	D		T_{μ} = 6, 6, 0, 1, d_{μ} , 7, 2, 6, 5, 0 = 7, 5, 0 = 71, 2, 0, 2, 4, 0, 0 = 1, 2,
4180.82 0	3/2 ,5/2,1/2	D		J [*] : log $ft=6.0$, log $f^{**}t=7.3$ from $5/2^{\circ}$, γ to $5/2^{\circ}$. The 2603 γ to $9/2^{\circ}$ makes $3/2^{\circ}$ unlikely.
4192.1 10		D		
4197.91 11		D		
4204.1 15		D		
4223.4 3		D		
4220.34 9		ע		
4205.1 0	312 512 712	ם ד		I^{π} : log ft-6.8 log $f^{\mu}t$ -8.1 from $5/2^{-1}$ or to $5/2^{+1}$
4327 21 10	3/2,3/2,7/2	ם ח		$J^{\pi}: \log f_{t} = 6.6 \log f^{t} t = 7.8 \text{ from } 5/2^{-1} \approx t_{0} 5/2^{+1}$
4357.0.5	$(17/2-)^{b}$	^D	C	$J : \log f(-0.0, \log f) = f(-0.0 \operatorname{Hom} S/2), f(0, S/2).$
4272 4 8	$(17/2^+)^{b}$		r F	
43/2.4 8	$(17/2^{-1})^{-1}$	4 D	r	I_{μ} log $f_{\mu} \in 0$ log $f_{\mu} = 7.2$ from $5/2^{-1}$. The 2575 of to $(0/2^{+})$ moles $2/2^{+}$ unlikely
4410.92 0	2/2 ^{, 7} , 5/2, 1/2	A D		J^{*} : log $f_{i}=0.0$, log $f_{i}^{**}t=7.2$ from $5/2^{-1}$. The 2575 γ to $(9/2^{+})$ makes $5/2^{-1}$ unlikely.
4520.2.4	$(10/2-)^{h}$	D	-	$J : \log \beta i = 0.0, \log \beta - i = 0.0 \mod \beta/2$, $\gamma = 0.0 \int \beta/2$.
4530.2 4	(19/2)	A D	r	\mathbf{VDEE} : $\Lambda(4536)$
4548.29 20	317 517 717			I^{π} : log $ft = 6.4$ log $f^{\mu}t = 7.6$ from $5/2^{-1}$ or to $5/2^{+1}$
4595 51 6	3/2, 3/2, 7/2 $3/2^{(-)} 5/2 7/2$	ם ח		J^{π} : log $f_{t}=0.4$, log $f^{t}=7.0$ from $5/2^{-1}$, γ to $5/2^{+1}$. The 2754 γ to $(9/2^{+})$ makes $3/2^{+1}$
4575.51 0	5/2 ,5/2,7/2	^D		$y = \log y = 0.0, \log y = 1.2 \mod 0.02$, $y = 0.072$. The 2754 $y = 0.072$ $y = 1 \mod 0.02$
4620.90 20	3/2.5/2.7/2	D		J^{π} : log ft=6.7, log f ¹ t=7.8 from 5/2 ⁻ , γ to 5/2 ⁺ .
4644.58 13	$3/2^{(-)}, 5/2, 7/2$	D		J^{π} : log ft=6.3, log f ¹ ut=7.5 from 5/2 ⁻ , γ to 5/2 ⁺ . The 3066 γ to 9/2 ⁺ makes 3/2 ⁺
				unlikely.
4655.2 <i>3</i>		D		
4668.19 9	$3/2^{(-)}, 5/2, 7/2$	D		J ⁿ : log ft=6.4, log f ^{1u} t=7.5 from 5/2 ⁻ . The 3091 γ to 9/2 ⁺ makes 3/2 ⁺ unlikely.
4/10.35 6	5/2+,7/2	D		$J^{\pi}: \log ft = 5.7$ from $5/2^{-}$, γ to $9/2^{+}$.
4/11.25 10	5/2,5/2,7/2	ע		$J^{*}: \log JI = 0.7, \log J^{**}I = 7.8 \text{ Irom } 5/2$.
+120.2 10	כוד כוז כוב	ע		I^{π} : log ft-67 log f ¹ / _u t-78 from 5/2 ⁻ x to 5/2 ⁺
4752 71 20	3/2,3/2,1/2	ע		J $\log_{11}(1-1), \log_{11}(1-1), \log$
4784 46 14	3/2,3/2,1/2	ע		J . $\log_{J} t = 0.7$, $\log_{J} t = 1.0$ from $J/2^{-1}$, $\gamma = 0.5/2^{+1}$. $I^{\pi} \cdot \log_{J} f = 50 \log_{J} f^{1/2} t = 7.0$ from $5/2^{-1}$, $\gamma = t_{0} \cdot 5/2^{+1}$. The 20/2 γ to $(0/2^{+1})$ makes $2/2^{+1}$.
1107.70 17	512 ,512,112	U		unlikely. $(j_1 - j_2), (j_2 - j_1), (j_1 - j_2), (j_1 -$
4807.9 4	3/2,5/2,7/2	A D		J^{π} : log ft=7.0, log $f^{1u}t=8.1$ from 5/2 ⁻ , γ to 5/2 ⁺ .
4824.9 4	3/2,5/2,7/2	D		J^{π} : log ft=7.0, log $f^{1u}t=8.1$ from 5/2 ⁻ , γ to 5/2 ⁺ .

⁸⁷Kr Levels (continued)

E(level) [†]	J ^{π‡#}	XREF	Comments
4836.29 20	3/2,5/2,7/2	D	J^{π} : log ft=6.8, log f ¹ ut=7.9 from 5/2 ⁻ , γ to 5/2 ⁺ .
4858.87 13	$3/2^{(-)}, 5/2, 7/2$	A D	XREF: A(4856).
			J^{π} : log ft=6.3, log f ¹ ut=7.4 from 5/2 ⁻ . The 3281 γ to 9/2 ⁺ makes 3/2 ⁺ unlikely.
4872.05 15	3/2,5/2,7/2	A D	XREF: A(4856).
4990 4 5		D	J^{n} : log ft=6.5, log f ^{1u} t=7.5 from 5/2 ⁻ , γ to 5/2 ⁺ .
4889.4 5	210 510 710	D	π 1 (70) $d\mu$ 00 (50) (50)
4917.7 11	3/2,5/2,7/2	D	J^{**} : log $ft = 7.0$, log $f^{**}t = 8.0$ from $5/2^{-}$, γ to $5/2^{+}$.
4925.77	3/2, 3/2, 1/2 2/2(-) 5/2, 7/2	D	$J^{*}: \log f = 0.8, \log f^{**} t = 1.9$ from $5/2^{-}$, $\gamma \log 5/2^{+}$.
4901.33 /	3/2 ^{, ,} ,3/2,1/2	D D	J [*] : $\log f = 5.5$ from $5/2^{\circ}$, $\gamma = 10^{\circ} 5/2^{\circ}$. The 5385 $\gamma = 10^{\circ} 9/2^{\circ}$ makes $5/2^{\circ}$ unlikely.
4902.45 21	5/2,5/2,7/2	ע	J^{-1} : $\log f = 0.8$, $\log f^{-1} = 7.8$ from $5/2$.
5003 2 5		D	
502173	3/2 5/2 7/2	D	$I^{\pi} \log t = 6.8 \log t^{4u} t = 7.8$ from $5/2^{-1} \approx t_0 5/2^{+1}$
5033.9 6	0/=,0/=,//=	D	
5044.7 <i>3</i>	3/2,5/2,7/2	D	J^{π} : log ft=6.3, log f ^{1u} t=7.3 from 5/2 ⁻ , γ to 5/2 ⁺ .
5059.69 20	3/2,5/2,7/2	D	J^{π} : log ft=6.5, log f ^{1u} t=7.5 from 5/2 ⁻ , γ to 5/2 ⁺ .
5065.9 <i>3</i>		D	
5076.19 17	$3/2^{(-)}, 5/2, 7/2$	D	J^{π} : log ft=6.3, log $f^{1u}t=7.3$ from 5/2 ⁻ , γ to 5/2 ⁺ . The 34998 γ to 9/2 ⁺ makes 3/2 ⁺
		_	unlikely.
5088.9 4		D	π 1 α α 1 $d\mu$ π 2 α α π α
5103.55 20	3/2,5/2,7/2	D	$J'': \log ft = 6.3, \log f''t = 7.2$ from $5/2$, γ to $5/2^+$.
5120.39 20	3/2,5/2,7/2	D	$J'': \log ft = 6.2, \log f^{1/4}t = 7.1$ from $5/2, \gamma$ to $5/2^+$.
5136.08 20	3/2,5/2,7/2	D	$J^{*}: \log ft = 0.7, \log f^{**}t = 7.0$ from $5/2^{\circ}, \gamma$ to $5/2^{\circ}$.
5183 4 3	כוד רוז כוב	ע	I^{π} , log ft-6.6, log f^{μ} t-7.5 from $5/2^{-}$ or to $5/2^{+}$
5105.4 5	3/2, 5/2, 7/2 3/2, 5/2, 7/2(-)	ש	J $\log f_{1} = 0.0, \log f_{1} = 7.5 \text{ from } 5/2^{-}, y \in 5/2^{+}, \text{ and } 1/2^{+}, \text{ although an E3 seems}$
5175.25 10	5/2,5/2,7/2	D	$j = \log j l = 5.6$, $\log j = l = 0.6$ from $5/2^\circ$, $\gamma = 0.6$ and $1/2^\circ$, and $1/2^\circ$, and $1/2^\circ$, and $1/2^\circ$.
5201.21 18	3/2.5/2.7/2(-)	D	J^{π} : log ft=5.9, log f ^{1u} t=6.8 from 5/2 ⁻ , γ 's to 5/2 ⁺ and 1/2 ⁺ although an E3 seems
			unlikely.
5214.25 14	3/2,5/2,7/2	D	J^{π} : log ft=5.7, log f ⁴ ut=6.6 from 5/2 ⁻ , γ to 5/2 ⁺ .
5245.6 <i>3</i>	3/2,5/2,7/2	D	J^{π} : log ft=6.5, log f ¹ ut=7.4 from 5/2 ⁻ , γ to 5/2 ⁺ .
5280.70 14	3/2,5/2,7/2	D	J^{π} : log ft=6.0, log $f^{1u}t=6.9$ from 5/2 ⁻ , γ to 5/2 ⁺ .
5302.56 21	$3/2, 5/2^{(+)}$	D	J^{π} : log ft=6.3, log $f^{1u}t=7.2$ from 5/2 ⁻ , γ to 1/2 ⁺ .
5340.2 <i>3</i>	3/2,5/2,7/2	D	J^{π} : log ft=6.5, log $f^{1u}t=7.4$ from 5/2 ⁻ , γ to 5/2 ⁺ .
5370.1 <i>3</i>	3/2,5/2,7/2	D	J^{π} : log ft=6.5, log f ¹ ut=7.3 from 5/2 ⁻ , γ to 5/2 ⁺ .
5383.1 <i>3</i>	3/2,5/2,7/2	D	J^{π} : log ft=6.4, log f ¹ t=7.3 from 5/2 ⁻ , γ to 5/2 ⁺ .
5406.34 20	3/2,5/2,7/2	D	J^{n} : log ft=6.2, log f ¹ t=7.1 from 5/2 ⁻ , γ to 5/2 ⁺ .
5419.9 5		D	
5424.2 9	$(a_1)a_{-}b$	υ	
5436.3 0	(21/2)	r D	
5454.9.9	כוד רוז כוב	ע	I^{π} , log ft-6.2, log f^{μ} t-7.0 from $5/2^{-}$ of to $5/2^{+}$
5454.9 5	3/2, 3/2, 7/2 3/2, 5/2, 7/2	ע	J : $\log f_l = 0.2$, $\log f_l = 1.0$ from $5/2^-$, γ to $(3/2)^+$ and (3167α) to $(1/2^+)$ although an E3 seems
5400.79 15	5/2,5/2,7/2	D	$J = \log \beta (-5.6 \text{ from } 5/2)$, $\gamma (0) (5/2)$ and $5107\gamma (0) (1/2)$, although an E5 seems unlikely.
5473.74 20	3/2,5/2,7/2	D	J^{π} : log ft=5.9, log f ¹ t=6.7 from 5/2 ⁻ , γ to 5/2 ⁺ .
5519.9 7	$(23/2^{-})^{b}$	F	
5520.72 25	(<i>i</i> -)	c	
5526.67 25		С	
5534.184 6	1/2-	С	$\Gamma_n = 14.8 \text{ eV } 4$
5540.70 25	(2/2) -	C	
5542.71 25	(3/2)	C	$I_n = /.9 \text{ eV } 3$ $M_{\text{e}} I_n = 1 \text{ in } (n \text{ m})$
			J : L=1 III (II,X).

E(level) [†]	Jπ‡#	$T_{1/2}^{(a)}$	XREF	Comments
5546.7 6	(5/2-)		D	J^{π} : log <i>ft</i> =6.9, log $f^{1u}t$ =7.6 from 5/2 ⁻ , γ to 5/2 ⁺ , not observed as resonance in (n,X) (see 1983Ra21).
5551.66 2	$1/2^{+}$	54 eV 2	С	J^{π} : L=0 in (n,x).
5558.606 15	$1/2^{-}$	127 eV 3	С	
5561.9 9	(5/2-)		D	J ^{π} : log $ft=7.0$, log $f^{4u}t=7.8$ from $5/2^-$, γ to $5/2^+$, not observed as resonance in (n,X) (see1983Ra21).
5563.27 4			С	$\Gamma_n = 45 \text{ eV } l$
5564.28 26	$1/2^{+}$	45 eV 1	С	J^{π} : L=0 in (n,x).
5568.94 26	$3/2^{-}$	201 eV 3	С	%IT=0.27 7
				$\Gamma_n = 200 \text{ eV } 3$
				J^{π} : L=1 in (n,x).
5583.05 26	$(1/2)^{-}$	00 TT (C	J^{n} : L=1 in (n,x).
5593.4 8	$1/2^{-}$	93 eV 4	C	%IT=0.38 14
5502 70 2	(1/2-)		6	$\Gamma_n = 93 \text{ eV } 4$
5593.70 3	$(1/2^{-})$		C	%IT=3.4 <i>10</i>
				$\Gamma_n = 10.3 \text{ eV} 12$
5594.7 3	(5/2-)		D	J ^{<i>a</i>} : log $ft=6.5$, log $f^{iu}t=7.3$ from $5/2^-$, γ to $5/2^+$, not observed as resonance in (n,X).
5602.48 26	$(3/2^+)$		C	J^{n} : L=(2) in (n,x).
5606.4 5	$3/2^{-}$	<311 ^{<i>u</i>} eV	CD	J^{π} : L=1 in (n,x) and log <i>ft</i> =6.6, log $f^{1u}t$ =7.3 from 5/2 ⁻ , γ to 5/2 ⁺ .
5635.2 5	(5/2 ⁻)		D	J^{π} : log $ft=6.7$, log $f^{1u}t=7.4$ from $5/2^-$, γ to $5/2^+$, not observed as resonance in (n,X).
5638.40 26	$1/2^{-}$		С	J^{π} : L=1 in (n,x).
5638.78 26	$(3/2^+)$		С	J^{π} : L=(2) in (n,x).
5638.82 26	$(3/2^{-})$		С	J^{π} : L=(1) in (n,x).
5648.8 9	(5/2-)		D	J^{π} : log $ft=7.5$, log $f^{1u}t=8.2$ from $3/2^-$, γ to $5/2^+$, not observed as resonance in (n,X).
5651.08 6	$1/2^{+}$		С	
5655.5 10	$3/2^{-}$	0.32 keV 4	С	
5659.9 4	(5/2 ⁻)		D	J^{π} : log $ft=6.8$, log $f^{1u}t=7.5$ from $5/2^-$, γ to $5/2^+$, not observed as resonance in (n,X).
5670.30 7	3/2-		С	$\Gamma_n = 0.54 \text{ keV } 3$
5671.14 26	$1/2^{+}$		С	J^{π} : L=0 in (n,x).
5671.57 26	$(1/2^{-})$		С	J^{π} : L=(1) in (n,x).
5672.3 4	$(5/2^{-})$		D	J ^{π} : log ft=6.6, log f ^{1u} t=7.3 from 5/2 ⁻ , γ to 5/2 ⁺ , not observed as
				resonance in (n,X).
5682.81 27	$3/2^{-}$		С	J^{π} : L=1 in (n,x).
5685.6 <i>3</i>	(5/2 ⁻)		D	J^{π} : log $ft=6.2$, log $f^{1u}t=6.8$ from $5/2^-$, γ to $5/2^+$, not observed as resonance in (n,X).
5691.44 27	$(3/2^{-})$		С	J^{π} : L=(1) in (n,x).
5698.8 4	(5/2 ⁻)		D	J^{π} : log $ft=6.9$, log $f^{1u}t=7.6$ from $5/2^-$, γ to $5/2^+$, not observed as resonance in (n,X).
5701.8 8	$1/2^{-}$		С	$\Gamma_{\rm n} = 1.48 \text{ keV } 12$
5712.46 27	$1/2^{+}$		С	J^{π} : L=0 in (n,x).
5714.7 9	(5/2 ⁻)		D	J^{π} : log ft=7.3, log $f^{1u}t=8.0$ from 5/2 ⁻ , γ to 5/2 ⁺ , not observed as resonance in (n,X).
5719.70 27	$1/2^{+}$		С	J^{π} : L=0 in (n.x).
5724.36 28	3/2-		С	J^{π} : L=1 in (n,x).
5735.89 28	$(1/2^{-})$		С	J^{π} : L=1 in (n,x), but 1983Ra21 suggests $3/2^{-}$.
5736.68 28	3/2-		С	J^{π} : L=1 in (n,x).
5740.04 28	$1/2^{+}$		С	J^{π} : L=0 in (n,x).
5750.32 28	$3/2^{-}$		С	J^{π} : L=1 in (n,x).
5761.4 8	$3/2^{-}$		С	$\Gamma_n = 2.38 \text{ keV } 3$
5779.65 29	$(3/2^+)$		С	$\Gamma_n=24 \text{ eV } 12$

⁸⁷Kr Levels (continued)

E(level) [†]	J ^{π‡#}	XREF	Comments
5782.46 29	$(3/2^+)$	С	J^{π} : L=(2) in (n,x).
5782.63 30	$1/2^{-}$	C	$\Gamma_n = 0.56 \text{ keV } 3$
			J^{π} : L=1 in (n,x).
5784.20 30	3/2-	С	$\Gamma_n=95 \text{ eV } 10$
			J^{π} : L=1 in (n,x).
5793.3 4	$(5/2^{-})$	D	J ^{π} : log ft=6.2, log f ⁴ ut=6.8 from 3/2 ⁻ , γ to 5/2 ⁺ , not observed as resonance in (n,X).
5798.60 <i>30</i>	$(3/2^+)$	С	$\Gamma_n = 18 \text{ eV} 3$
			J^{π} : L=(2) in (n,x).
5805.62 30	3/2-	С	Γ_n =5.97 keV 12
		_	J^{π} : L=1 in (n,x).
5818.91 <i>31</i>	$(3/2^{-})$	C	$I_n = 35 \text{ eV } 6$
5021 20 21	(2/0+)		J^{n} : L=(1) in (n,x).
5821.28 31	$(3/2^+)$	C	%11>20 E 20 X 2
			$I_n = 20 \text{ eV} 3$
587464 21	1/2+	C	$J^{-1} L = (2) III (II, X).$
3624.04 31	1/2	C	$I_{\rm n} = 5.21 \text{ KeV } 5$ I^{π} , $I_{\rm n} = 0$ in (n x)
5828 25 31	3/2-	C	$\Gamma = -75 \text{ eV } 8$
5626.25 51	5/2	C	$I_{n}^{\pi} = 75 \text{ eV } 0$ $I_{n}^{\pi} = I_{n} = 1 \text{ in } (n \text{ x})$
5828 61 31	$(3/2^+)$	C	$\Gamma_{n} = 93 \text{ eV } 9$
0020101 01	(0/=)	-	I^{π} : L=(2) (n x).
5829.78 <i>31</i>	$(1/2^{-})$	С	$\Gamma_n = 88 \text{ eV } 16$
			J^{π} : L=(1) in (n,x).
5841.64 32	$1/2^{+}$	С	$\Gamma_n = 1.37 \text{ keV } 5$
			J^{π} : L=0 in (n,x).
5850.97 <i>32</i>	$1/2^{-}$	С	$\Gamma_{n} = 140 \text{ eV } 14$
			J^{π} : L=1 in (n,x).
5862.06 <i>3</i>	3/2-	C	$\Gamma_{n} = 1488 \text{ eV } 15$
		_	J^{π} : L=1 in (n,x).
5863.26 <i>33</i>	$1/2^{-}$	C	$\Gamma_{n} = 265 \text{ eV } 19$
5074 06 22	2/2-	6	J^{n} : L=1 in (n,x).
38/4.20 33	3/2	C	$I_n = 2.72 \text{ KeV } 3$ $I_n = 1 \text{ in } (n \text{ x})$
5876 52 31	3/2+	C	J : L=1 III (II,X).
5670.52 54	5/2	C	$I_n = 50 \text{ eV} \text{ 5}$ $I_n^{\pi} \cdot I_n = 2 \text{ in } (n \text{ x})$
5877 38 34	$(1/2^+)$	C	$\Gamma_{-2} = 25 \text{ eV} 5$
5077.50 57	(1/2)	C	$I_{\rm fl}^{\pi} = 2500000000000000000000000000000000000$
5877.72.34	$(3/2^+)$	C	$\Gamma_n = 53 \text{ eV} 15$
00111201	(0/=)	-	J^{π} : L=(2) in (n.x).
5883.85 <i>34</i>	$1/2^{-}$	С	$\Gamma_n = 5.62 \text{ keV } 11$
			J^{π} : L=1 in (n,x).
5885.97 <i>34</i>	3/2-	С	Γ_n =3.17 keV 4
			J^{π} : L=1 in (n,x).
5900.95 <i>35</i>	$1/2^{+}$	С	$\Gamma_n = 1.36 \text{ keV } 5$
			J^{π} : L=0 in (n,x).
5901.50 35	$1/2^{-}$	C	$\Gamma_{\rm n} = 340 \text{ eV} 17$
5000 55 35	2/2+		J^{n} : L=1 in (n,x).
5903.57 35	3/2+	C	$I_n = 198 \text{ eV } 10$
5000 10 26	2/2 = (2/2 + 1)	C	J ^{\sim} : L=2 in (n,x). E(level) \overline{M} L \overline{E} = 1000C 17 means an expressional doublet in (n m) with 1 1 and
3908.18 30	3/2 ,(3/2)	C	$E_{(\text{LVCI}),\text{J}}$, L_{J} , L_{I} , $\frac{1900\text{Cal}}{1}$ report an unresolved doublet in (n,x) with i=1 and $1-(2)$. For the i=1 component $\Gamma_{\text{I}} = 780$ key 25 and for the i=(2) component $\Gamma_{\text{I}} = 92$
			$I = (2)$. For the $I = 1$ component, $I_n = 700$ keV 23 and for the $I = (2)$ component, $I_n = 83$ eV 13 both for $I = 3/2$
5922 15 36	$1/2^{-}$	C	$\Gamma_{-}=113 \text{ keV } 6$
2722.13 30	-/	~	J^{π} : L=1 in (n.x).
5925.16.37	3/2-	с	$\Gamma_n = 13.09 \text{ keV } 13$
	1	-	ii

⁸⁷Kr Levels (continued)

E(level) [†]	J ^{π‡#}	XREF	Comments
5025 04 25	(2/2+)		J^{π} : L=1 in (n,x).
5925.94 37	$(3/2^{+})$	C	$\Gamma_{n} = 45 \text{ eV } 10$ $I^{\pi} \cdot I = (2) \text{ in } (n \text{ x})$
5939.16 37	3/2-	С	$\Gamma_{\rm n} = 255 \text{ eV } 13$
5044 (4 27	$(2/2^{\pm})$	6	J^{π} : L=1 in (n,x).
5944.64 37	$(3/2^{+})$	C	$I_n = 70 \text{ eV } 10$ $I^{\pi} \cdot I_n = (2) \text{ in } (n \text{ x})$
5951.87 <i>38</i>	$(3/2^+)$	С	$\Gamma_n = 30 \text{ eV } \delta$ $I^{\pi}: L=(2) \text{ in } (n.x).$
5953.5 4	$1/2^{-}$	С	$\Gamma_n = 230 \text{ eV } 25$
5958.6 4	3/2+	С	J^{T} : L=1 in (n,x). $\Gamma_n=280 \text{ eV } I4$ I^{T} : L=2 in (n,x)
5964.4 <i>4</i>	3/2-	С	$\Gamma_n = 1.86 \text{ keV } 4$ $\Gamma_n = 1.1 = 1 \text{ in } (n \text{ x})$
5968.6 4	$1/2^{+}$	С	$\Gamma_{n}=0.82 \text{ keV } 4$
5976.7 4	3/2+	С	J^{n} : L=0 in (n,x). $\Gamma_{n}=175 \text{ eV } 9$
5991.3 4	$(3/2^+)$	C	$J^{*}: L=2.$ $\Gamma_n=25 \text{ eV } 6$ $M_{*}: L=(2) \text{ in } (n \times 1)$
5994.8 <i>5</i>	3/2-	С	$\Gamma_{n} = 1.335 \text{ keV } 25$
6002.4 5	$1/2^{+}$	С	$J^{*:} L=1 \text{ in } (n, \mathbf{x}).$ $\Gamma_n=0.34 \text{ keV } 3$
6008.2 5	3/2+	C	$J^{*:} L=0 \text{ in } (n, \mathbf{x}).$ $\Gamma_n=348 \text{ eV } I3$
6013.8 <i>5</i>	1/2-	С	$J^{-1} = L = L = L = 1$ (n,x). $\Gamma_n = 4.64 \text{ keV } 12$
6015.81 5	$(3/2^+)$	С	$\Gamma_{n} = 43 \text{ eV } 9$
6017.4.5	$1/2^{+}$	С	J^{π} : L=(2) in (n,x). Γ_{n} =2.07 keV 8
0017110	-/-		J^{π} : L=0 in (n,x).
6022.4 5	$1/2^{-}$	C	$\Gamma_n = 155 \text{ eV } 17$
6025.2 5	$1/2^{-}$	С	$\Gamma_{\rm n} = 120 \text{ eV } 15$
6026.4 5	3/2-	с	J^{π} : L=1 in (n,x). Γ_{n} =4.66 keV 5
6022 1 5	$(1/2^{-})$	C	J^{π} : L=1 in (n,x).
0052.1 5	(1/2)	C	$J_n = 0.21 \text{ keV } S$ J^{π} : L=(1) in (n.x).
6033.2 5	$(1/2^{-})$	С	$\Gamma_n = 25 \text{ eV} 12$
6035.2 5	3/2+	С	J^{n} : L=(1) in (n,x). Γ_{n} =2.66 keV 5
6041.2 5	(5/2 ⁺)	С	$J^{+}: L=2 \text{ in } (n, \mathbf{x}).$ $\Gamma_n=47 \text{ eV } 10$ $I^{\pi}: L=(2) \text{ in } (n, \mathbf{x}).$
6042.2 5	(5/2+)	C	$ \Gamma_{n} = 132 \text{ eV } I7 $
6043.3 5	3/2-	C	$\Gamma_{n} = 1.12 \text{ keV } 4$
6046.63 5	(1/2 ⁻)	С	J ^{**} : L=1 in (n,x). $\Gamma_n = 70 \text{ eV } 10$ $\pi_1 \text{ L} = (1) \text{ in } (n,x)$
6048.7 5	1/2+	С	$\Gamma_n = 45 \text{ eV } 15$ J^{π} : L=0 in (n,x).

E(level) [†]	J ^π ‡#	XREF	Comments
6049.0 5	1/2-	С	$\Gamma_n = 175 \text{ eV } 10$
6054.8 5	3/2+	С	J^{*} : L=1 in (n,x). Γ_{n} =75 eV 11
6056.8 5	3/2+	С	J^{*} : L=2 in (n,x). Γ_{n} =170 eV 15
6057.4 5	3/2-	С	$J^{*}: L=2 \text{ in } (n,x).$ $\Gamma_{n}=3.75 \text{ keV } 8$
6064.3 5	$1/2^{-}$	С	$J^{n}: L=1 \text{ in } (n, x).$ $\Gamma_{n}=400 \text{ eV } 20$ $I_{n}: L=1 \text{ in } (n, x).$
6067.0 5	3/2-	С	$\Gamma_n = 1.93 \text{ eV } 4$
6075.9 5	$1/2^{-}$	С	$\Gamma_n = 1.26 \text{ keV } 5$ $\Gamma_n = 1.26 \text{ keV } 5$
6076.1 5	$1/2^{+}$	С	$\Gamma_n = 2.14 \text{ keV } 15$ $\Gamma_n = 0. \text{ in } (n, \mathbf{x})$
6077.6 5	3/2-	С	$\Gamma_n = 6.34 \text{ keV } 10$ $\Gamma_n = 1 \text{ in } (n, x)$
6081.6 5	1/2-	С	$\Gamma_n = 240 \text{ eV } 20$ $I^{\pi} : I = 1 \text{ in } (n, x)$
6094.3 5	$1/2^{-}$	С	$\Gamma_n = 1.61 \text{ keV } 3$ $I^{\pi} : I = 1 \text{ in } (n, x)$
6101.3 5	3/2-	С	$\Gamma_n = 4.60 \text{ keV } 8$ I^{π} : $I = 1 \text{ in } (n, x)$
6101.5 5	3/2+	С	$\Gamma_n = 185 \text{ eV } 10$ I^{π} : L = 2 in (n x)
6103.4 5	3/2+	С	$\Gamma_n = 383 \text{ eV } 20$ $I^{\pi} : I = 2 \text{ in } (n, x)$
6105.0 5	3/2-	С	$\Gamma_n = 135 \text{ eV } 15$ $I^{\pi} : I = 1 \text{ in } (n, x)$
6116.9 5	1/2-	С	$\Gamma_n=3.51 \text{ keV } 7$ $I^{\pi}: L=1 \text{ in } (n, x)$
6127.0 6	3/2+	С	$\Gamma_n = 80 \text{ eV } I6$ $J^{\pi}: L = 2 \text{ in } (n,x).$
6130.9 6	1/2-	С	$\Gamma_n = 2.20 \text{ keV } 9$ J^{π} : L=1 in (n,x).
6132.3 6	1/2+	С	$\Gamma_n = 0.39 \text{ keV } 6$ J^{π} : L=0 in (n,x).
6132.9 6	3/2-	С	$\Gamma_n = 33.5 \text{ keV } 7$ J^{π} : L=1 in (n,x).
6134.0 6	3/2+	С	$\Gamma_n = 0.25 \text{ keV } 4$ J^{π} : L=2 in (n,x).
6139.1 6	3/2-	C	$\Gamma_n = 0.27 \text{ eV } 4$ J ^{π} : L=1 in (n,x).
6149.0 6	1/2+	C	$\Gamma_n = 1.17 \text{ keV } I2$ J^{π} : L=0 in (n,x).
6151.4 6	3/2-	С	$\Gamma_n=0.27 \text{ keV } 3$ J^{π} : L=1 in (n,x).
6153.2 6	$1/2^{-}$	С	$\Gamma_{n}=6.42 \text{ keV } 6$ $J^{\pi}: L=1 \text{ in } (n,x).$
6155.7 6	$(5/2^+)$	C	$\Gamma_n = 53 \text{ eV } 13$ J ^{π} : L=(2) in (n,x).
6164.8 6	$1/2^{-}$	C	$\Gamma_n = 1.37 \text{ keV } 9$ J ^{π} : L=1.
6172.8 6	3/2-	С	$\Gamma_n=12.3 \text{ keV } 4$

E(level) [†]	J ^{π‡#}	XREF	Comments
6177.9 6	3/2-	С	J^{π} : L=1 in (n,x). Γ_{n} =21.2 keV 4
6187.3 6	$1/2^{+}$	С	J^{π} : L=1 in (n,x). Γ_{n} =190 eV 15
6188.0 6	3/2+	С	J^{π} : L=0 in (n,x). Γ_{n} =0.12 keV 4
6191.7 6	3/2-	С	J^{π} : L=2 in (n,x). Γ_{n} =21.4 keV 4
6193.5 6	$(3/2^+)$	С	J^{n} : L=1. Γ_{n} =0.12 keV 4
6201.4 6	$(3/2^+)$	С	$J^{n}: L=(2)$ in (n,x). $\Gamma_n=0.12$ keV 4 $J^{n}: L=(2)$ in (n, x).
6202.3 6	$1/2^{+}$	С	$\Gamma = L = (2)$ in (n,x). $\Gamma_n = 0.60$ keV 8
6207.6 6	1/2-	С	$\Gamma_{\rm n} = 0.85 \text{ keV } 10$
6208.4 6	3/2-	С	$\Gamma_n = 5.51 \text{ keV } 17$
6214.0 6	1/2-	С	$\Gamma_{n} = 13.7 \text{ keV } 6$
6217.4 6	3/2-	С	$\Gamma_{n} = 2.20 \text{ keV } 22$
6225.1 7	1/2-	С	$\Gamma_{n} = 0.58 \text{ keV } 9$
6225.6 6	3/2+	С	$\Gamma_{n} = 0.18 \text{ keV } 5$ $\Gamma_{n} = 2 \text{ in } (n, \mathbf{x})$
6228.6 7	3/2+	С	$\Gamma_n = 160 \text{ eV } 16$ $\Gamma_n = 1 - 2 \text{ in } (n, \mathbf{x})$
6232.8 7	3/2-	С	$\Gamma_n = 3.40 \text{ keV } 4$
6233.2 7	$(5/2^+)$	С	$\Gamma_{n} = 123 \text{ eV } I3$ $I^{\pi} \cdot I = (2) \text{ in } (n \text{ x})$
6235.5 7	$1/2^{+}$	С	$\Gamma_n = 2.8 \text{ eV } 5$ $\Gamma_n = 0 \text{ in } (n \text{ x})$
6237.1 7	3/2+	С	$\Gamma_n = 0.60 \text{ keV } 4$ $\Gamma_n = 2 \text{ in } (n, \mathbf{x})$
6239.2 7	3/2-	С	$\Gamma_n = 0.60 \text{ keV } 4$
6241.0 7	$1/2^{-}$	С	$\Gamma_n = 7.0 \text{ keV } 5$ $\Gamma_n = 1.0 \text{ keV } 5$ $\Gamma^{\pi} \cdot \mathbf{I} = 1 \text{ in } (n, \mathbf{x})$
6242.8 7	5/2+	С	$\Gamma_n = 50 \text{ eV } 4$ $I^{\pi} : L = 2 \text{ in } (n, x)$
6247.6 7	3/2-	С	$\Gamma_n = 1.38 \text{ keV } 4$ I^{n} : L=1 in (n,x).
6251.7 7	$1/2^{+}$	С	$\Gamma_n = 0.87 \text{ keV } I8$ $I^{\pi}: L = 0 \text{ in } (n, x).$
6255.0 7	3/2-	С	$\Gamma_{n} = 5.9 \text{ keV } 6$ J ^{π} : L=1 in (n,x).
6256.0 7	1/2-	С	$\Gamma_{n} = 6.5 \text{ keV } 8$ J ^{π} : L=1 in (n,x).
6258.9 7	$(3/2^+)$	С	$\Gamma_n = 240 \text{ eV } 24$ J^{π} : L=(2) in (n,x).
6261.4 7	1/2+	C	$\Gamma_n = 1.8 \text{ keV } 4$ J^{π} : L=0 in (n,x).

E(level) [†]	J ^π ‡#	XREF	Comments
6266.4 7	1/2-	С	$\Gamma_n = 5.1 \text{ keV } 7$
6267.5 7	3/2-	С	J^{n} : L=1 in (n,x). Γ_{n} =7.3 keV 7 M L = 1 in (n, x)
6281.5 7	3/2-	С	$\Gamma_n = 15.4 \text{ keV } 13$
6283.2 7	$1/2^{+}$	С	$\Gamma_{\rm r} = 0.27 \text{ keV } 8$
6292.0 7	3/2-	С	$\Gamma_n = 5.4 \text{ keV } 3$ $\Gamma_n = 1 \text{ in } (n, \mathbf{x})$
6293.2 7	$(3/2^+)$	С	$\Gamma_{n} = 162.5 \text{ eV } 25$ $\Gamma_{n} = 1.62.5 \text{ eV } 25$
6297.5 7	1/2-	С	$\Gamma_n = 3.56 \text{ keV } 4$
6300 62 8		F	$J \cdot L = 1 \text{ III (II,A)}.$
6303.2 7	1/2-	C	$\Gamma_n = 9.87 \text{ keV } 10$
6308.4 7	3/2-	С	$\Gamma_{n} = 1.700 \text{ keV } 25$
6318.9 7	3/2-	С	$\Gamma_{n} = 952 \text{ eV } 17$ $\Gamma_{n} = 1 \text{ in } (n, \mathbf{x}).$
6323.3 8	3/2-	С	$\Gamma_{n} = 0.67 \text{ keV } 14$
6326.0 8	1/2+	С	$\Gamma_{n} = 0.76 \text{ keV } 19$
6331.5 8	$(1/2^{-})$	С	$\Gamma_n = 55 \text{ eV } 16$ $\Gamma_n = (1) \Gamma_n (n, x)$
6334.0 8	1/2+	С	$\Gamma_{n} = 0.16 \text{ keV } 5$
6335.4 8	$(3/2^+)$	С	$\Gamma_{n} = 118 \text{ eV } 20$
6336.6 8	$1/2^{+}$	С	$\Gamma_{n} = 0.14 \text{ keV } 5$
6337.5 8	$(3/2^+)$	С	$\Gamma_{n} = 130 \text{ eV } 20$ $\Gamma_{n} = 1.30 \text{ eV } 20$
6341.9 8	3/2-	С	$\Gamma_n = 9.9 \text{ keV } 5$ $\Gamma_n = 1.1 \text{ in } (n \text{ x})$
6348.2 8	3/2-	С	$\Gamma_{n} = 4.7 \text{ keV } 7$ $\Gamma_{n} = 1 - 1 \text{ in } (n, \mathbf{x})$
6348.4 8	$(3/2^+)$	С	$\Gamma_n = 1.90 \text{ keV } 19$ $\Gamma_n = 1.90 \text{ keV } 19$ $\Gamma_n = 1.90 \text{ keV } 19$
6356.3 8	$1/2^{+}$	С	$\Gamma_n = 0.32 \text{ keV } 10$ $\Gamma^{\pi} = 0 \text{ in } (n \text{ x})$
6357.8 8	3/2-	С	$\Gamma_n = 0.76 \text{ keV } 19$ $I^{\pi} \cdot I = 1 \text{ in } (n, \mathbf{x})$
6358.1 8	$(3/2^+)$	С	$\Gamma_n = 0.09 \text{ keV } 3$ $\Gamma_n = 1.09 \text{ keV } 3$
6365.2 8	1/2	С	$\Gamma_n = 1.0 \text{ keV } 3$ $\Gamma_n = 1.0 \text{ in } (n \text{ x})$
6366.7 8	$(1/2^{-})$	С	$\Gamma_{n} = 1.45 \text{ keV } I8$ $I^{\pi} \cdot I = (1) \text{ in } (n \text{ x})$
6371.9 8	3/2-	С	$\Gamma_{n} = 1.9 \text{ keV } 3$ $I^{\pi} \cdot I = 1 \text{ in } (n \text{ x})$
6373.6 8	$(3/2^+)$	С	$\Gamma_n = 0.13 \text{ keV } 3$ J^{π} : L=(2) in (n,x).

 $^{87}_{36}$ Kr₅₁-11

Adopted Levels, Gammas (continued)

⁸⁷Kr Levels (continued)

E(level) [†]	J ^π ‡#	XREF	Comments
6376.9 8	3/2-	С	$\Gamma_n = 5.7 \text{ keV } 5$
6379.0 8	1/2+	С	$\Gamma_{\Gamma} = 98 \text{ eV } 20$
6380.0 7	$(5/2^+)$	С	J^{n} : L=0 in (n,x). Γ_{n} =0.66 keV 7
6382.7 8	$(3/2^+)$	С	J^{π} : L=(2) in (n,x). Γ_{n} =108 eV <i>11</i>
6385.0 8	1/2-	С	J^{π} : L=(2) in (n,x). Γ_{n} =2.9 keV 5
6385.2 8	$(3/2^+)$	С	J^{π} : L=1 in (n,x). Γ_n =0.10 keV 3
6390.0 8	3/2-	С	$J^{\pi}: L=(2) \text{ in } (n,x).$ $\Gamma_n=2.6 \text{ keV } 3$
6392.7 8	3/21	С	$J^{\pi}: L=1 \text{ in } (n,x).$ $\Gamma_n=0.43 \text{ keV } 4$
6394.1 8	$(1/2^{+})$	С	$J^{\pi}: L=1 \text{ in } (n,x).$ $\Gamma_n=0.08 \text{ keV } 4$
6396.1 8	3/2-	С	$J^{π}$: L=(0) in (n,x). Γ_n =0.54 keV 6
6398.5 8	1/2-	С	J^{π} : L=1 in (n,x). Γ_n =1.88 keV 19
6402.8 8	$(5/2^+)$	С	J^{π} : L=1 in (n,x). Γ_{n} =0.68 keV 17
6407.2 9	$(3/2^+)$	С	$J^{π}$: L=(2) in (n,x). Γ_n =0.22 keV 4
6407.7 9	3/2-	С	$J^{π}$: L=(2) in (n,x). Γ_n =28.6 keV 20
6410.0 9	$(5/2^+)$	С	J^{π} : L=1 in (n,x). Γ_n =0.21 keV 6
6413.2 9	$(3/2^+)$	С	$J^{π}$: L=(2) in (n,x). Γ_n =0.11 keV 4
6414.9 9	$(1/2^{-})$	С	$J^{π}$: L=(2) in (n,x). Γ _n =0.24 keV 7
6418.2 9	$(3/2^+)$	С	J^{π} : L=(1) in (n,x). Γ_{n} =0.26 keV 4
6419.5 9	$(3/2^+)$	С	J^{π} : L=(2) in (n,x). Γ_{n} =0.63 keV 7
6422.5 9	$(5/2^+)$	С	J^{π} : L=(2) in (n,x). Γ_{n} =0.22 keV 6
6428.1 9		С	J^{π} : L=(2) in (n,x). E(level): Reported as a doublet with L=1 and Γ_n =0.46 keV 12 and Γ_n =1.9 keV 4.
6429.0 9	$(3/2^+)$	C	$\Gamma_{n} = 0.30 \text{ keV } 8$ J^{π} : L=(2) in (n,x).
6433.4 9	1/2+	C	$\Gamma_n=2.3 \text{ keV } 6$ J^{π} : L=0 in (n,x).
6436.7 9	$(5/2^+)$	С	$\Gamma_n = 0.18 \text{ keV } 6$ J^{π} : L=(2) in (n,x).
6438.5 9	$(3/2^+)$	С	$\Gamma_n = 0.25 \text{ keV } 8$ J^{π} : L=(2) in (n,x).
6439.1 9	3/2-	С	$\Gamma_n = 4.0 \text{ keV } 5$ $I^{\pi}: I = 1 \text{ in } (n, x).$
6443.1 9	$(3/2^+)$	С	$\Gamma_n = 0.48 \text{ keV } I4$ I^{π} : L =(2) in (n x)
6444.2 9	3/2-	C	$\Gamma_{n}=3.1 \text{ keV } 6$ J ^{π} : L=1 in (n,x).

⁸⁷Kr Levels (continued)

E(level) [†]	J ^π ‡#	XREF	Comments
6445.3 9	(3/2+)	С	$\Gamma_n = 0.20 \text{ keV } 6$ J^{π} : L=(2) in (n.x).
6446.2 9	1/2-	C	$\Gamma_n = 13.7 \text{ keV } 20$ J^{π} : L=1 in (n,x).
6450.7 9	(3/2 ⁺)	C	$\Gamma_n = 0.26 \text{ keV } 8$ J^{π} : L=(2) in (n,x).

[†] From least-squares fit to γ -ray energies for levels depopulated by γ rays.

[‡] From (n,X) for levels above $S_n=5515$ keV, unless indicated otherwise. See comment on J^{π} in that data set.

[#] The log *ft* values from the ⁸⁷Br β^- decay have been used in many J^{π} assignments, but as noted in that decay, the intensities of the β^- branches are not well determined because there are many unplaced γ 's. Therefore, the log *ft*'s have been used only if the I_{β} values are > 0.3% for levels below 4000 keV, > 0.1% from 4000 to 5515 keV; all values have been used above the neutron binding energy, 5515 keV. For these assignments it has also been assumed that any γ ray to the ground state is not an M2.

[@] Calculated from γ branching ratio and $\Gamma(n)$ assuming no other decay branch.

[&] From (n,X).

^{*a*} From $\Gamma(n)$ assuming, as is the case for most of the low energy resonances, that $\Gamma\gamma/\Gamma(n) \le 0.5\%$.

^b Expected population of only yrast states in 208 Pb(18 O,(fragment) γ) and assuming increasing J with excitation energy.

^{*c*} Band(A): γ cascade.

 $\gamma(^{87}\mathrm{Kr})$

Unplaced γ 's are not included here; see ⁸⁷Br β^- decay.

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult.	α^{\ddagger}	Comments
531.99	1/2+	532.03 7	100	0.0	5/2+			E _γ : from β^- . Others: 531.91 <i>13</i> ⁸⁶ Kr(n,γ), E=thermal, and 532.12 5 from ⁸⁸ Br β -n decay,
1419.65	$(7/2^+)$	1419.71 7	100	0.0	$5/2^{+}$	(E2)	2.88×10^{-4}	Mult.: Angular correlations.
1476.12	3/2+,5/2+	944.12 7	17.7 13	531.99	1/2+			E_{γ}, I_{γ} : from β^{-} decay. Others: 944.2 3 86 Kr(n, γ), E=thermal.
		1476.06 7	100 8	0.0	5/2+			E_{γ} , I_{γ} : from β ⁻ decay Others: 1475.94 17 ⁸⁶ Kr(n, γ), E=thermal.
1577.59	9/2+	1577.60 7	100	0.0	5/2+	[E2]		Mult.: γ to $5/2^+$.
1841.42	$(9/2^+)$	421.74 10	100	1419.65	$(7/2^+)$	D		
1881.19	$3/2^+, 5/2^+$	461.52 7	22.6 16	1419.65	$(7/2^+)$			
		1349.19 7	23.7 16	531.99	$1/2^{+}$			
		1881.20 20	100 11	0.0	5/2+			
2005.42	$3/2^+, 5/2^+$	529.60 15	25 4	1476.12	$3/2^+, 5/2^+$			
		2005.52 7	100 8	0.0	5/2+			
2071.65		230.33 9	23.5 18	1841.42	$(9/2^+)$			
		651.96 7	48 4	1419.65	$(7/2^+)$			
		2071.66 7	100 9	0.0	5/2+			
2086.7	1/2+	611.5 8	100	1476.12	$3/2^+, 5/2^+$			
2105.37	$(11/2^+)$	263.96 7	100	1841.42	$(9/2^+)$	D		
		527.5 <i>3</i>	18 5	1577.59	9/2+			E_{γ} : from ²⁰⁸ Pb(¹⁸ O,F γ).
2122.53	$3/2^+, 5/2^+$	2122.62 9	100	0.0	5/2+			
2258.67	$11/2^{-}$	417.1 <i>3</i>	8 <i>3</i>	1841.42	$(9/2^+)$			E_{γ} : Seen only in (¹⁸ O,F γ).
		681.22 8	100 8	1577.59	9/2+	[E1]	4.72×10^{-4}	Mult.: Angular correlations gives d.
		2258.44 10	39 <i>3</i>	0.0	5/2+	[E3]		
2300.02	$(1/2^+)$	824.0 <i>3</i>	21 4	1476.12	3/2+,5/2+			

$\gamma(^{87}\text{Kr})$ (continued)

E_i (level)	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	Comments
2300.02	(1/2+)	1768.07 7 2299.93 8	100 7 55 4	531.99 0.0	1/2 ⁺ 5/2 ⁺		
2329.9 2369.49		853.8 <i>6</i> 893.42 <i>9</i>	100 71 6	1476.12 1476.12	3/2 ⁺ ,5/2 ⁺ 3/2 ⁺ ,5/2 ⁺		
2371.8	1/2,3/2	2369.39 <i>10</i> 1839.8 <i>4</i>	100 <i>14</i> 100	0.0 531.99	5/2 ⁺ 1/2 ⁺		E_{γ} : from (n,γ). This γ cannot be the 1840 γ seen in β ⁻ decay because the stronger γ's deexciting the 2372.35 level in β ⁻ decay have not been seen in (n a)
2372.35	(3/2+,5/2+)	896.0 <i>4</i> 952.66 <i>15</i> 1840.10 <i>15</i>	13 <i>3</i> 74 7 38 <i>4</i>	1476.12 1419.65 531.99	3/2 ⁺ ,5/2 ⁺ (7/2 ⁺) 1/2 ⁺		nave not been seen in (n,y).
2451.91		2372.387 610.467 874.307 2451.88 <i>10</i>	100 8 90 9 58 5 100 8	0.0 1841.42 1577.59 0.0	5/2 ⁺ (9/2 ⁺) 9/2 ⁺ 5/2 ⁺		
2462.86 2498.59		2462.82 <i>10</i> 617.5 <i>3</i> 920.98 <i>7</i> 1078.88 <i>9</i> 2498 58 <i>7</i>	100 21 7 91 7 17.5 <i>18</i> 100 7	0.0 1881.19 1577.59 1419.65	$5/2^+$ $3/2^+, 5/2^+$ $9/2^+$ $(7/2^+)$ $5/2^+$		
2513.75	7/2+ 0/2+	1037.63 7	100 / 100	1476.12	$3/2^+, 5/2^+$		E . Not included in the least squares
2518.91	1/2*,9/2*	1099.88 10	7.0 8	1419.05	(7/2*)		E_{γ} : Not included in the least squares adjustment to obtain level energies.
2547.1 2565.9 2605 77		2519.0 <i>4</i> 2547.1 <i>3</i> 1146.2 <i>6</i>	100 7 100 100	0.0 0.0 1419.65	$5/2^+$ $5/2^+$ $(7/2^+)$ $2/2^+ 5/2^+$		
2614.49 2641.74	(13/2 ⁺)	509.1 <i>3</i> 636.39 8 2641 67 8	100 100 27.1 <i>17</i> 100 9	2105.37 2005.42 0.0	$3/2^{+}, 5/2^{+}$ $(11/2^{+})$ $3/2^{+}, 5/2^{+}$ $5/2^{+}$	D	
2715.24 2757.69 2787.34	3/2+ 5/2+	2715.19 <i>10</i> 1338.03 <i>7</i> 1311 21 <i>10</i>	100 100 100	0.0 1419.65 1476.12	$5/2^+$ $(7/2^+)$ $3/2^+$ $5/2^+$		
2821.06	5/2 ,5/2	698.59 9 2820.97 7	7.8 6 100 6	2122.53 0.0	$3/2^+, 5/2^+$ $5/2^+$		
2832.1 2836.55	(3/2,5/2,7/2)	1356.0 6 714.09 7 831.26 7 1360.59 20 2836 36 7	100 5.6 3 38 3 100 6 41 3	1476.12 2122.53 2005.42 1476.12	$3/2^+, 5/2^+$ $3/2^+, 5/2^+$ $3/2^+, 5/2^+$ $3/2^+, 5/2^+$ $5/2^+$		
2863.26 3004.0 3020.81		1285.66 9 3003.9 3 1443.21 15	100 100 100 26 5	1577.59 0.0 1577.59	9/2 ⁺ 5/2 ⁺ 9/2 ⁺		
3020.84		955.1 3 1021.26 7 1449.24 7 1607.32 7 3026.77 7	20 3 93 7 79 6 100 7 93 7	2071.65 2005.42 1577.59 1419.65 0.0	3/2 ⁺ ,5/2 ⁺ 9/2 ⁺ (7/2 ⁺) 5/2 ⁺		
3080.78		3080.72 <i>15</i> 3142 85 <i>15</i>	100	0.0	$5/2^+$ $5/2^+$		
3171.86 3217.86		1330.43 <i>15</i> 1095.16 <i>15</i> 1146.3 <i>6</i>	100 100 15.5 <i>17</i> 25 <i>7</i>	1841.42 2122.53 2071.65	$(9/2^+)$ $3/2^+, 5/2^+$		
		1212.60 9 1376.08 <i>15</i>	32 <i>3</i> 16.7 <i>17</i>	2005.42	$3/2^+, 5/2^+$ (9/2 ⁺)		

$\gamma(^{87}\mathrm{Kr})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$	Mult.	α^{\ddagger}	Comments
3217.86		1798.31 7	100 7	1419.65	$(7/2^+)$			
3225.97		3217.61 9 853.6 6 2693.94 10 3225.9 3	55 5 24 <i>10</i> 100 8 26.8 25	0.0 2372.35 531.99 0.0	$5/2^+$ $(3/2^+, 5/2^+)$ $1/2^+$ $5/2^+$			
3237.19 3256.90		1659.58 <i>9</i> 737.96 <i>7</i> 1415.43 <i>15</i>	100 31.3 20 100 14	1577.59 2518.91 1841.42	9/2+ 7/2+,9/2+ (9/2+)			
		1836.78 [#] 7	93 7	1419.65	$(7/2^+)$			E_{γ} : Not included in least squares fit for energy levels.
3288.4 3297.13 3301.9		3256.92 <i>10</i> 1868.7 <i>3</i> 1291.7 <i>2</i> 1043.3 <i>6</i> 1882 2 <i>4</i>	21.3 20 100 100 20 7 100 17	0.0 1419.65 2005.42 2258.67 1410.65	$5/2^+$ (7/2 ⁺) $3/2^+, 5/2^+$ $11/2^-$ (7/2 ⁺)			
3361.9 3434.76		3361.8 7 1958.23 15 3435.07 15	100 <i>17</i> 100 70 <i>9</i> 100 <i>9</i>	0.0 1476.12 0.0	$5/2^+$ $3/2^+, 5/2^+$ $5/2^+$			
3444.9 3525.26	(15/2 ⁻)	3444.8 <i>3</i> 910.8 <i>3</i>	100 35 7	0.0 2614.49	5/2 ⁺ (13/2 ⁺)		.	
3559.7 3599.00		1266.6 <i>3</i> 555.72 <i>7</i> 3598.92 <i>15</i>	100 22 100 100	2258.67 3004.0 0.0	11/2 ⁻ 5/2 ⁺	E2	3.13×10 ⁻⁴	
3645.52	3/2+,5/2,7/2	1126.78 <i>15</i> 1640.24 <i>20</i> 2169.30 <i>7</i> 2226 1 <i>3</i>	15.4 <i>18</i> 33 6 100 7 27 6	2518.91 2005.42 1476.12	$7/2^+, 9/2^+$ $3/2^+, 5/2^+$ $3/2^+, 5/2^+$ $(7/2^+)$			
3657.3 3689.1 3777.4		3657.2 <i>10</i> 3689.0 <i>5</i> 940.8 <i>6</i>	100 100 100	0.0 0.0 2836.55	(1/2) $5/2^+$ $5/2^+$ (3/2,5/2,7/2) $(2/2^+)$			
3807.03 3809.41 3874.18	3/2,5/2,7/2	1965.58 9 3809.32 <i>15</i> 1355.1 6 2398.01 7	$100 \\ 100 \\ 22 7 \\ 100 7$	1841.42 0.0 2518.91 1476.12	$(9/2^+)$ $5/2^+$ $7/2^+, 9/2^+$ $3/2^+, 5/2^+$			
3909.8		2454.70 <i>20</i> 3909.7 <i>7</i>	66 7 100	1419.65 0.0	$(7/2^+)$ $5/2^+$			
3914.3 3917.16 3923.0	(15/2 ⁺) 3/2,5/2,7/2	1299.7 <i>4</i> 3917.06 <i>10</i> 2345.4 <i>6</i>	100 100 100	2614.49 0.0 1577.59	(13/2 ⁺) 5/2 ⁺ 9/2 ⁺			
4027.2 4088.2	(17/2 ⁻)	4027.1 5 173.9 2 562.9 2	100 17 5 100 <i>16</i>	0.0 3914.3 3525.26	5/2 ⁺ (15/2 ⁺) (15/2 ⁻)			
4136.3 4180.82	3/2 ⁽⁻⁾ ,5/2,7/2	4136.2 <i>4</i> 1344.60 <i>15</i> 2603.20 <i>8</i> 4180.54 <i>10</i>	100 5.2 5 10.2 8 100 8	0.0 2836.55 1577.59 0.0	5/2 ⁺ (3/2,5/2,7/2) 9/2 ⁺ 5/2 ⁺			
4192.1 4197.91 4204.1		4192.0 <i>10</i> 2192.46 <i>10</i> 4204.0 <i>15</i>	100 100 100	$0.0 \\ 2005.42 \\ 0.0$	5/2 ⁺ 3/2 ⁺ ,5/2 ⁺ 5/2 ⁺			
4223.4 4226.34 4265.1		4223.3 <i>3</i> 1389.77 <i>7</i> 4265.0 <i>6</i>	100 100 100	0.0 2836.55 0.0	5/2 ⁺ (3/2,5/2,7/2) 5/2 ⁺			
4297.29 4327.21	3/2,5/2,7/2 3/2,5/2,7/2	4297.18 <i>15</i> 1685.58 <i>15</i> 2446.2 <i>3</i>	100 47 5 30 5	0.0 2641.74 1881.19	5/2 ' 3/2 ⁺ ,5/2 ⁺			

$\gamma(^{87}\text{Kr})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}
4327.21	3/2,5/2,7/2	2907.46 15	100 10	1419.65	$(7/2^+)$
		4326.83 20	68 5	0.0	5/2+
4357.9	$(17/2^{-})$	832.6 4	100	3525.26	$(15/2^{-})$
4372.4	$(17/2^+)$	1757.9 7	100	2614.49	$(13/2^+)$
4416.92	$3/2^{(-)}, 5/2, 7/2$	2345.3 4	16 <i>3</i>	2071.65	
		2411.74 15	5.7 5	2005.42	$3/2^+, 5/2^+$
		2575.37 9	25.2 22	1841.42	$(9/2^+)$
		2997.21 7	100 9	1419.65	$(7/2^+)$
4524.15	3/2,5/2,7/2	3048.04 20	34 4	1476.12	$3/2^+, 5/2^+$
		4523.96 20	100 11	0.0	5/2+
4530.2	$(19/2^{-})$	441.8 3	100 30	4088.2	$(17/2^{-})$
		1005.2 4	100 30	3525.26	$(15/2^{-})$
4548.29		4548.16 20	100	0.0	5/2+
4572.49	3/2, 5/2, 1/2	45/2.36 15	100	0.0	5/21
4595.51	3/2(-),5/2,7/2	2143.40 15	19.2 23	2451.91	
		2523.97 10	23.8 23	20/1.65	(0/2+)
		2134.3 4	18.5 25	1841.42	$(9/2^+)$
		31/3./4 /	100 /	1419.05	$(1/2^{+})$
4620.00	312 512 712	4390.4 0	17.5	0.0	5/2
4020.90	3/2, 3/2, 7/2 3/2(-) 5/2 7/2	4020.77 20	15 0 12	1577.50	$\frac{3}{2}$
4044.36	5/2 ,5/2,7/2	<i>4644</i> 58 20	100.0	1377.39	9/2 5/2 ⁺
4655.2		3235 5 3	100 9	1419.65	$(7/2^+)$
4668 10	3/2(-) 5/2 7/2	2662 70 15	85 13	2005 42	(1/2)
4008.19	5/2**,5/2,7/2	3090.8.6	23.8	1577 59	$9/2^+$
		3248 45 9	100.8	1419.65	$(7/2^+)$
4710.35	5/2+.7/2	2638.7.4	25.4	2071.65	(1/2)
1710.55	5/2 ,//2	2704.88 7	100 6	2005.42	$3/2^+.5/2^+$
		2828.79 20	11.8 12	1881.19	$3/2^+, 5/2^+$
		2869.20 15	14.1 12	1841.42	$(9/2^+)$
		3132.64 9	14.7 12	1577.59	9/2+
		4710.23 20	22.9 24	0.0	5/2+
4711.25	3/2,5/2,7/2	1493.38 8	100	3217.86	
4728.2		4728.1 10	100	0.0	5/2+
4734.55	3/2,5/2,7/2	3314.6 6	46 13	1419.65	$(7/2^+)$
		4734.44 20	100 9	0.0	5/2+
4752.71	3/2,5/2,7/2	4752.57 20	100	0.0	5/2+
4784.46	$3/2^{(-)}, 5/2, 7/2$	2943.0 <i>3</i>	4.3 6	1841.42	$(9/2^+)$
4007.0		4784.32 15	100 6	0.0	5/2+
4807.9	3/2,5/2,7/2	4807.8 4	100	0.0	5/2
4824.9	3/2,5/2,7/2	4824.8 4	100	0.0	5/2+
4830.29	3/2, 5/2, 7/2	4830.15 20	100	0.0	$\frac{5}{2}$
4858.87	3/2('),5/2,7/2	3017.3975	82.0	1841.42	$(9/2^+)$
1972 05	בוד בוז בוז	3281.23 20	100 12	15/7.59	9/2 5/2 ⁺
4872.03	5/2,5/2,7/2	48/1.90 13	100	0.0	5/2 5/2 ⁺
4009.4	312 512 712	4009.5 5	100	0.0	5/2+
4925 7	3/2,5/2,7/2	4925 6 7	100	0.0	5/2 ⁺
4961 55	3/2, 3/2, 7/2 $3/2^{(-)} 5/2 7/2$	1044 3 6	3010	3917.16	3/2 5/2 7/2
1701.33	512 ,512,112	1934.67 8	11.0 10	3026.84	512,512,112
		2509.63 20	8.5 10	2451.91	
		2889.8 4	5.0 10	2071.65	
		3383.3 7	83	1577.59	9/2+
		3541.79 15	22.0 15	1419.65	$(7/2^+)$
		4961.54 15	100 5	0.0	5/2+

$\gamma(^{87}\text{Kr})$ (continued)

E _i (level)	\mathbf{J}_i^π	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$
4962.43	3/2,5/2,7/2	2125.85 20	100	2836.55	(3/2, 5/2, 7/2)
4976.1	1 / 1 / 1	4975.9 9	100	0.0	5/2+
5003.2		5003.0.5	100	0.0	$5/2^+$
5021.7	3/2.5/2.7/2	5021.5 3	100	0.0	$5/2^+$
5033.9	-,-,-,-,-,-	5033.7 6	100	0.0	5/2+
5044.7	3/2.5/2.7/2	5044.5.3	100	0.0	$5/2^+$
5059.69	3/2 5/2 7/2	5059 53 20	100	0.0	5/2+
5065.9	0/=,0/=,//=	4533.8.3	100	531.99	$1/2^+$
5076 19	3/2(-) 5/2 7/2	3498 4 3	100 12	1577 59	9/2+
5070.17	5/2 ,5/2,7/2	5076.08.20	73.8	0.0	5/2+
5088 0		5088 7 1	100	0.0	5/2+
5103 55	317 517 717	5103 30 20	100	0.0	5/2+
5120.30	3/2,3/2,1/2	5120 23 20	100	0.0	5/2+
5126.09	3/2,3/2,1/2	5120.23 20	100	0.0	5/2
5155 1	5/2,5/2,7/2	5153.92.20	100	0.0	5/2
5192.4	212 512 712	5192 2 2	100	0.0	5/2 5/2+
5165.4	5/2, 5/2, 7/2	3183.2.3	100	0.0	5/2
5195.25	3/2,5/2,1/2	4663.4 4	/9.8	531.99	1/2 +
		5195.02.20	100 10	0.0	5/2
5201.21	$3/2, 5/2, 7/2^{(-)}$	4669.9 4	51 7	531.99	1/2+
		5200.84 20	100 7	0.0	5/2+
5214.25	3/2,5/2,7/2	3091.6 6	31 7	2122.53	$3/2^+, 5/2^+$
		3794.46 15	100 8	1419.65	$(7/2^+)$
		5214.3 <i>3</i>	28 <i>3</i>	0.0	5/2+
5245.6	3/2,5/2,7/2	5245.4 <i>3</i>	100	0.0	5/2+
5280.70	3/2,5/2,7/2	2639.0 6	46 16	2641.74	
		3804.6 <i>3</i>	65 <i>23</i>	1476.12	$3/2^+, 5/2^+$
		3860.90 15	100 8	1419.65	$(7/2^+)$
		5281.5 9	4.2 16	0.0	5/2+
5302.56	$3/2, 5/2^{(+)}$	4770.43 20	100	531.99	1/2+
5340.2	3/2,5/2,7/2	5340.0 <i>3</i>	100	0.0	5/2+
5370.1	3/2,5/2,7/2	5369.9 <i>3</i>	100	0.0	5/2+
5383.1	3/2,5/2,7/2	5382.9 <i>3</i>	100	0.0	5/2+
5406.34	3/2,5/2,7/2	5406.16 20	100	0.0	5/2+
5419.9		5419.7 5	100	0.0	5/2+
5424.2		5424.0 9	100	0.0	$5/2^{+}$
5436.3	$(21/2^{-})$	1348.1 5	100	4088.2	$(17/2^{-})$
5439.9		5439.7 9	100	0.0	5/2+
5454.9	3/2,5/2,7/2	5454.7 <i>3</i>	100	0.0	$5/2^{+}$
5466.79	$3/2.5/2.7/2^{(-)}$	3166.81 15	100 10	2300.02	$(1/2^+)$
	1 / 1 / 1	3381.0 8	42 20	2086.7	$1/2^+$
		3461.06 20	90 10	2005.42	$3/2^+, 5/2^+$
5473.74	3/2.5/2.7/2	5473.56 20	100	0.0	5/2+
5519.9	$(23/2^{-})$	989.7 5	100	4530.2	$(19/2^{-})$
5546.7	$(5/2^{-})$	5546.5 6	100	0.0	$5/2^+$
5561.9	$(5/2^{-})$	5561.7 9	100	0.0	$5/2^+$
5594.7	$(5/2^{-})$	5594.5 3	100	0.0	$5/2^+$
5606.4	3/2-	5606.2 5	100	0.0	5/2+
5635.2	$(5/2^{-})$	5635.0 5	100	0.0	5/2+
5648.8	$(5/2^{-})$	5648.6 9	100	0.0	5/2+
5659.9	$(5/2^{-})$	5659.7 4	100	0.0	5/2+
5672.3	$(5/2^{-})$	5672.1 4	100	0.0	5/2+
5685.6	$(5/2^{-})$	5685.4 3	100	0.0	5/2+
5698.8	$(5/2^{-})$	5698.6 4	100	0.0	5/2+
5714.7	$(5/2^{-})$	5714.5 9	100	0.0	5/2+
	S 1 /				

 $\gamma(^{87}\text{Kr})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}
5793.3	(5/2-)	5793.1 4	100	0.0	5/2+
6300.6?		864.6 [#] 5	100	5436.3	$(21/2^{-})$

[†] From β⁻ decay, unless indicated otherwise.
[‡] Additional information 1.
[#] Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

 $--- \sim \gamma$ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{87}_{36}{
m Kr}_{51}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

0 51

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{87}_{36}{
m Kr}_{51}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{87}_{36}{\rm Kr}_{51}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

