${ }^{86} \mathrm{Kr}(\mathbf{d}, \mathbf{p}),($ pol d,p) \quad 1970Ha16,1978De20

$\frac{\text { Type }}{\frac{\text { Author }}{\text { Full Evaluation }}} \frac{\text { History }}{\text { T. D. Johnson and W. D. Kulp(a) }} \quad \frac{\text { Citation }}{\text { NDS 129, } 1(2015)} \quad$| Literature Cutoff Date |
| :--- |
| $27-J u l-2015$ |

1965Sa06: $\mathrm{E}=15 \mathrm{MeV}, \theta=12^{\circ}-45^{\circ}$. Level energies above 1 Mev are higher by $50-100 \mathrm{keV}$ than those adopted.
1970Ha16: $\mathrm{E}=11 \mathrm{MeV}, \Delta \mathrm{E}=30 \mathrm{keV}, \theta=20^{\circ}-160^{\circ}$ in 5° steps. Finite-range DWBA analysis of $\sigma(\theta)$.
1971Co21: $\mathrm{E}=4.5-10.5 \mathrm{MeV}, \theta=100^{\circ}-160^{\circ}$ in 20° steps. Determined cross sections as a function of $\mathrm{E}(\mathrm{d})$ for levels at 0 , 530 , and 1470 keV .
1978De20: $\mathrm{E}=12 \mathrm{MeV}, \Delta \mathrm{E} \approx 16 \mathrm{keV}, \theta=25^{\circ}-100^{\circ}$ with polarized deuterons. Determined vector analyzing power for ground state transition and DWBA analysis of $\sigma(\theta)$ for ground state and 529 and 2112 levels.
Unless noted otherwise, data are from 1970Ha16.
${ }^{87} \mathrm{Kr}$ Levels

$\mathrm{E}\left(\right.$ level) ${ }^{\dagger}$	J^{π}	$L^{\text {\# }}$	S^{\ddagger}	Comments
0.0	$5 / 2^{+}$	2	0.56	J^{π} : from analyzing power (1978De20).
529		0	0.46	
1468		2	0.23	
1570				$\mathrm{E}\left(\mathrm{level)}\right.$: This level likely corresponds to the adopted 1570 level with 1577 level with $\mathrm{J}^{\pi}=9 / 2^{+}$.
1873		(2)	0.02	
1996		2	0.09	
2080		(0)	0.18	
2112		2	0.30	
2250		(5)	0.18	
2277		(0)	0.03	E (level): incompletely resolved from the 2250 level. $\mathrm{J}^{\pi}:\left(1 / 2^{+}\right)$assigned to level at 2300 keV .
2515		4	0.49	
2775		2	0.10	
2823		2	0.11	J^{π} : there are Adopted Levels at 2832, and 2836 to which this L might apply.
3015		2	0.08	J^{π} : there are Adopted Levels at 3020, and 3026 to which this L might apply.
3223		@	@	
3237		@	@	

3552
3819
3871
4402
4536
4800
4856
${ }^{\dagger}$ A comparison of energies of the first five excited levels with the adopted values shows these values are low by about 8 keV . A change of +5 keV in calibration energy accounts for part of this discrepency. The evaluators have increased the authors' energies by 8 keV when making level associations in the Adopted Levels. The 3819 level is seen only in this reaction and in the Adopted Levels is given as $\mathrm{E}=3827$.
${ }^{\#}$ For the DWBA calculation for $\mathrm{L}=2$, the values are for $\mathrm{J}^{\pi}=3 / 2^{+}$, except for the ground state; for $\mathrm{L}=4 \mathrm{~J}^{\pi}$ is taken to be $7 / 2^{+}$; and for $L=5 \mathrm{~J}^{\pi}$ is taken to be $11 / 2^{-}$.
\# Assignments of 1965 Sa 06 agree with those of 1970 Ha 16 , except where noted.
${ }^{@}$ The 3223 and 3237 levels were not resolved. From the assumption that $\mathrm{L}=2$ is valid for both members of the doublet, 1970Ha16 deduce $\mathrm{S}=0.12$ for $\mathrm{J}^{\pi}=3 / 2^{+}$and $\mathrm{S}=0.08$ for $\mathrm{J}^{\pi}=5 / 2^{+}$. In $1965 \mathrm{Sa06}$ a peak at 3310 keV was reported with $\mathrm{L}=(0+2)$ that probably corresponds to this doublet.

