Adopted Levels

	History	t		
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	T. D. Johnson and W. D. Kulp(a)	NDS 129, 1 (2015)	27-Jul-2015	

 $Q(\beta^{-})=10808\ 4;\ S(n)=4727\ 5;\ S(p)=1.31\times10^{4}\ SY;\ Q(\alpha)=-8786\ 4$ 2012Wa38

 $Q(\beta^{-}n) = 6814 \ 4 \ 2012Wa38.$

The uncertainty of the proton separation energy value is 300 keV.

2008Ha23: U(p,F), E=25 MeV; measured cyclotron frequency, determined mass excess; IGISOL facility.

1993Ru01: ²³⁵U(n,F) E=thermal; measured n, β , n(t), β (t); OSIRIS facility.

1978Cr03: ²³⁵U(n,F) E=thermal] measured n, β , n(t), β (t); LOHENGRIN facility.

⁸⁷As Levels

E(level)	J^{π}	T _{1/2}	Comments
0.0	(3/2 ⁻)	484 ms 40	$\%\beta^{-}=100; \ \%\beta^{-}n=15.4 \ 22$

 J^{π} : from systematics of the odd-mass arsenic isotopes, see the nuclear-data evaluations for α =77 (1997Fa12), 79 (2002Si13), and 81 (2008Ba34).

 $T_{1/2}$: There have been several measurements of the half life. In 2013Ma22 a proton beam was provided by the Oak Ridge Isochronous Cyclotron (ORIC) at the HRIBF-ORNL facility with a 238 UC_x target. Fission fragment were ionized to charge state +1 then purified using H₂S gas, a mass pre-separator and electromagnetic separation. The purified beams were then sent to the Low-energy Radioactive Ion Beam Spectroscopy Station (LeRIBSS) and implanted in a moving tape collector. Measured Ey, Iy, E β , $\beta\gamma$ -coin, and half-life of the ⁸⁷As g.s. using two plastic scintillation counters and four HPGe detectors. Comparison with the Gross theory of β eta decay, the finite-range droplet model and the continuum quasiparticle random-phase approximation. The half life was measured from a β -gated time distribution of γ rays in ⁸⁷Se and ⁸⁶Se. In 2012Qu01, a ¹³⁶Xe primary beam, E=120 MeV/nucleon, impinged on a 235 mg/cm² Be target. Experiment performed at the NSCL Coupled Cyclotron Facility. Fragments were separated by the A1900 fragment separator using the $\beta \rho - \Delta E - \beta \rho$ technique. Beta decays measured in the NSCL BETA Counting System (BCS) consisting of four silicon pin detectors, a double sided silicon strip detector and a single sided silicon strip detector. Measured energy loss total kinetic energy, time of flight, and isotopic isotopic half-life. a total of 27 implantions were observed with 12 correlated decay sequences. The value listed in Table I of 2012Qu01 is 1450 ms 550 (systematic) +3900=1100 (statistical) and used the maximum liklihoood method for the $T_{1/2}$ analysis. However, due to the large uncertainties, this was not included in the weighted average. Finally, the Adopted Value is taken from a weighted average of 0.485 s 40 (1993Ru01), neutron counting measurements, both values, 0.478 s 44 and 0.495 60 from 2013Ma22 and adopting the smallest uncertainty from that set. Others: ≤ 1.5 s (1967De01), $0.6 \text{ s} 3(1970 \text{Kr}05) \approx 0.3 \text{ s} (1973 \text{Kr}06) 0.73 \text{ s} 6 (1978 \text{Cr}03), \text{ and } 1.5 \text{ s} 39-12 \text{ from}$ maximum-likelihood method (2012Qu01).

 $\%\beta^{-n}$: from 1993Ru01; others: 44% (14) (1978Cr03) which was re-evaluated to 51% (35) in 1993Ru01.