⁸⁶Zr ε decay (16.5 h) 1977LaZN,1966Hy01

	Histor	У	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Alexandru Negret, Balraj Singh	NDS 124, 1 (2015)	30-Nov-2014

Parent: ⁸⁶Zr: E=0.0; J^{π}=0⁺; T_{1/2}=16.5 h *I*; Q(ε)=1315 *15*; % ε +% β ⁺ decay=100.0

⁸⁶Zr-Q(ε): From 2012Wa38.

1977LaZN (also 1975LaYR): Assignment to ⁸⁶Zr from lifetime observations. Used chemically and mass-separated isotopes. 1966Hy01: measured E γ , I γ , $\gamma\gamma$, $\gamma\gamma$ (t), (x ray) γ (t) using Ge(Li), Si and NaI(Tl) gamma detectors.

1964Aw02: measured E γ , I γ , T_{1/2}.

1968Tr11: measured $\gamma\gamma$ (t), g factor by $\gamma(\theta,H,t)$.

⁸⁶Y Levels

E(level)	$J^{\pi \dagger}$	T _{1/2}	Comments
0.0	4-		
242.80 10	2^{-}	28.5 ns 21	$g=-0.53 \ 3 \ (1968Tr11)$
			$T_{1/2}$,g: from time-differential perturbed angular correlation (1968Tr11). Other: 29 ns 3 from $\gamma\gamma(t)$ (1966Hy01).
271.90 13	1^{+}	<10 ns	$T_{1/2}$: from ε x-ray/29-keV decay γ -ray coincidence measurements (1966Hy01).
883.90 13	1^{+}		

[†] From Adopted Levels.

ε, β^+ radiations

E(decay)	E(level)	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^\dagger$	Comments
(431 15)	883.90	5.7 3	5.28 4	5.7 3	εK=0.8669 3; εL=0.10880 25; εM+=0.02428 7
(1043 15)	271.90	95 8	4.84 4	95 8	εK=0.8717; εL=0.10499 4; εM+=0.02331 1
(1072 [‡] 15)	242.80	< 0.16	>8.3 ¹ <i>u</i>	< 0.16	εK=0.8675 2; εL=0.1083 1; εM+=0.02416 3
					$I(\varepsilon + \beta^+)$: from log $f^{1u}t > 8.5$.

[†] Absolute intensity per 100 decays.

[‡] Existence of this branch is questionable.

 $\gamma(^{86}Y)$

I γ normalization: from Ti(242.8 γ)=100; ε + β ⁺ feeding to g.s. is highly forbidden.

E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger @}$	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [†]	δ	α &	Comments
29.1 <i>I</i>	22.5 16	271.90	1+	242.80 2-	E1		3.70 7	$\alpha(K)=3.22\ 6;\ \alpha(L)=0.403\ 7;\ \alpha(M)=0.0677$ I2 $\alpha(N)=0.00853\ I5;\ \alpha(O)=0.000438\ 8$ $\alpha(K)\exp=3.2\ 3\ (1977LaZN)$ $\alpha(K)\exp=3.2\ 3\ 3\ 3\ (1966Hv01)$
^x 94.2 <i>1</i>	0.048 3				M1+E2	0.6 3	0.51 21	$\alpha(K)=0.43 \ 17; \ \alpha(L)=0.07 \ 4; \ \alpha(M)=0.011 \ 6$ $\alpha(N)=0.0014 \ 7; \ \alpha(O)=6.8\times10^{-5} \ 24$ $\alpha(K)\exp=0.42 \ 16$
^x 127.7 [#] 1	0.073 9				M1+E2		0.26 18	α (K)exp=0.19 4 α (K)=0.23 15; α (L)=0.032 24; α (M)=0.006 4

⁸⁶Zr ε decay (16.5 h) 1977LaZN,1966Hy01 (continued)

$\gamma(^{86}Y)$ (continued)

E _γ ‡	Ι _γ ‡@	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [†]	α &	Comments
								α (K)=0.23 <i>15</i> ; α (L)=0.032 <i>24</i> ; α (M)=0.006 <i>4</i> α (N)=0.0007 <i>5</i> ; α (O)=3.6×10 ⁻⁵ <i>21</i> α : overlaps M1 and E2.
^x 135.6 [#] 1	0.49 5					M1	0.0788	α (K)exp=0.089 <i>14</i> α (K)=0.0693 <i>10</i> ; α (L)=0.00794 <i>12</i> ; α (M)=0.001359
^x 160.7 1	0.10 1					M1	0.0500	$\alpha(N)=0.000182 \ 3; \ \alpha(O)=1.246\times10^{-5} \ 18$ $\alpha(K)\exp=0.061 \ 16$ $\alpha(K)=0.0440 \ 7; \ \alpha(L)=0.00501 \ 7; \ \alpha(M)=0.000858 \ 12$
^x 173.7 1	0.073 9					M1	0.0407	$a(K)=0.0001151 \ 17; \ a(O)=7.89\times10^{-6} \ 12$ $a(K)=0.0001151 \ 17; \ a(O)=7.89\times10^{-6} \ 12$ $a(K)\exp=0.049 \ 14$ $a(K)=0.000696 \ 10$
^x 207.9 2	0.086 9					E2	0.0741	$\begin{array}{l} \alpha(\text{K}) = 0.0505 \ \text{J}, \ \alpha(\text{L}) = 0.00407 \ \text{J}, \ \alpha(\text{M}) = 0.0000507 \ \text{I} \\ \alpha(\text{K}) = 9.34 \times 10^{-5} \ 14; \ \alpha(\text{O}) = 6.42 \times 10^{-6} \ \text{g} \\ \alpha(\text{K}) = 0.0642 \ 10; \ \alpha(\text{L}) = 0.00833 \ 12; \ \alpha(\text{M}) = 0.001425 \\ 21 \end{array}$
X214.0.1	0.086.0					D		$\alpha(N)=0.000184 \ 3; \ \alpha(O)=1.036\times10^{-5} \ 15 \ \alpha(K)\exp=0.067 \ 11 \ c(K)\exp=0.067 \ 5 \ 5 \ C(K)\exp=0.017 $
242.8 <i>1</i>	100.0	242.80	2-	0.0	4-	E2	0.0427	$\alpha(K) \exp = 0.017.5$ $\alpha(K) = 0.0371.6$; $\alpha(L) = 0.00467.7$; $\alpha(M) = 0.000799.12$ $\alpha(N) = 0.0001040.15$; $\alpha(O) = 6.07 \times 10^{-6}.9$
612.0 <i>1</i>	6.0 <i>3</i>	883.90	1+	271.90	1+			α (K)exp=0.035 <i>3</i> (1966Hy01)
^{~620.6} ^{" 2} 641.1 [#] 1	0.28 4	883.90	1+	242.80	2-	D,E2		$\alpha(\mathbf{K})\exp{<0.002}$

[†] From α (K)exp of 1977LaZN, unless indicated otherwise.

[‡] From 1977LaZN.

[#] A possible cascade of 620.6 γ , 135.6 γ and 127.7 γ which adds to 883.9, could possibly decay from 883.9 level. Since the γ rays involved are very weak, additional information is required to verify such a placement.

 $^{@}$ For absolute intensity per 100 decays, multiply by 0.9584 20.

& Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$ ray not placed in level scheme.

Legend

⁸⁶Zr ε decay (16.5 h) 1977LaZN,1966Hy01

Decay Scheme

