$^{76}$ Ge( $^{14}$ N,4n $\gamma$ ), $^{86}$ Sr(d,2n $\gamma$ ) **1984Bu26,2000Io02** 

| History         |                                |                   |                        |  |  |  |  |
|-----------------|--------------------------------|-------------------|------------------------|--|--|--|--|
| Туре            | Author                         | Citation          | Literature Cutoff Date |  |  |  |  |
| Full Evaluation | Alexandru Negret, Balraj Singh | NDS 124, 1 (2015) | 30-Nov-2014            |  |  |  |  |

Includes  ${}^{73}\text{Ge}({}^{16}\text{O},\text{p}2n\gamma)$  from 1984Bu26;  ${}^{86}\text{Sr}(\text{p},n\gamma)$  and  ${}^{85}\text{Rb}({}^{3}\text{He},2n\gamma)$  from 2000Io02; and  ${}^{62}\text{Ni}({}^{27}\text{Al},2pn\gamma)$  from 1985Li11. 1984Bu26:  ${}^{73}\text{Ge}({}^{16}\text{O},\text{p}2n\gamma)$ , E=48 MeV to 60 MeV.  ${}^{76}\text{Ge}({}^{14}\text{N},4n\gamma)$ , E=38 MeV to 56 MeV. Enriched targets. Measured E $\gamma$ , I $\gamma$ ,

 $\gamma\gamma$ , excitation functions,  $\gamma(\theta)$ .

2000Io02: <sup>86</sup>Sr(d,2n $\gamma$ ) E=13.5 MeV; <sup>86</sup>Sr(p,n $\gamma$ ) E=14 MeV and <sup>85</sup>Rb(<sup>3</sup>He,2n $\gamma$ ) E=30 MeV. Measured lifetime, decay mode and g-factor by TDPAD method in external magnetic field. Data for g factors reanalyzed by 2010Ru07.

Other: 1985Li11: <sup>62</sup>Ni(<sup>27</sup>Al,2pnγ) E=85 MeV. Measured particle-γ coin to verify the level schemes proposed by 1984Bu26 and 1984Da06 through an independent reaction.

## <sup>86</sup>Y Levels

| E(level) <sup>†</sup> | $J^{\pi \ddagger}$ | T <sub>1/2</sub> # | Comments                                                                                                                                                                                                                                                                                                                             |
|-----------------------|--------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                     | 4-                 |                    |                                                                                                                                                                                                                                                                                                                                      |
| 208.1 10              | $(5)^{-}$          |                    | $\mu = -0.415 \ 15 \ (2010 \text{Ru} 07)$                                                                                                                                                                                                                                                                                            |
| 218.3 13              | (8+)               | 47.4 min 4         | $T_{1/2}$ : from Adopted Levels.                                                                                                                                                                                                                                                                                                     |
| 302.2 13              | $(6^{+})$          | 125 ns 6           | $J^{\pi}$ : $7^{-}$ was suggested in 2000Io02.                                                                                                                                                                                                                                                                                       |
|                       |                    |                    | g=-0.083 3 (2000Io02), but reanalyzed by some of the same authors, with revised $g=+0.63$ 2,<br>$\mu=+3.78$ 12 (2010Ru07).                                                                                                                                                                                                           |
|                       |                    |                    | Additional information 1.                                                                                                                                                                                                                                                                                                            |
| 886.3 17              | (9+)               |                    |                                                                                                                                                                                                                                                                                                                                      |
| 1325.4 13             | $(10^{+})$         | <0.5 ns            |                                                                                                                                                                                                                                                                                                                                      |
| 2258.4 17             |                    |                    | $J^{\pi}$ : 1984Bu26 propose J=11. However, $J^{\pi}=(12^+)$ is more likely from A <sub>2</sub> and A <sub>4</sub> values of 933 $\gamma(\theta)$ , and from a statement by the the authors that excitation function and $\gamma(\theta)$ of 933 $\gamma$ are similar to those of 1107 $\gamma$ from 1325, (10 <sup>+</sup> ) level. |
| 2521.3 14             | $(12^{+})$         | <0.5 ns            |                                                                                                                                                                                                                                                                                                                                      |
| 3189.3 17             |                    |                    | $J^{\pi}$ : 1984Bu26 propose J=14, but there does not seem any experimental evidence for this assignment.                                                                                                                                                                                                                            |
| 3877.7 20             | $(14^{+})$         |                    | $E(\text{level}), J^{\pi}$ : from 2000BuZW.                                                                                                                                                                                                                                                                                          |
| 4190.7 22             | (15+)              |                    | $J^{\pi}$ : 1984Bu26 propose J=15.                                                                                                                                                                                                                                                                                                   |

<sup>†</sup> From E $\gamma$  data, assuming  $\Delta E \gamma = 1$  keV when not stated.

<sup>‡</sup> From Adopted Levels.

<sup>#</sup> From recoil-distance method (1984Bu26).

## $\gamma(^{86}Y)$

A2 and A4 are from 1984Bu26, unless otherwise stated.

| Eγ                                   | E <sub>i</sub> (level)  | $\mathbf{J}_i^{\pi}$ | $E_f$                   | $\mathbf{J}_f^\pi$                                 | Mult. <sup>‡</sup>   | $\alpha^{e}$               | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------|-------------------------|----------------------|-------------------------|----------------------------------------------------|----------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (10.2 <sup>#</sup> )<br>83.9<br>94.1 | 218.3<br>302.2<br>302.2 |                      | 208.1<br>218.3<br>208.1 | $(5)^{-}$<br>(8 <sup>+</sup> )<br>(5) <sup>-</sup> | [E3]<br>[E2]<br>(E1) | 2.02 <i>4</i><br>0.1285 22 | $\begin{aligned} &\alpha(\text{K}) = 0.1134\ 20;\ \alpha(\text{L}) = 0.01271\ 22;\ \alpha(\text{M}) = 0.00215\ 4\\ &\alpha(\text{N}) = 0.000283\ 5;\ \alpha(\text{O}) = 1.78 \times 10^{-5}\ 3\\ &\text{Delayed measured } I\gamma(83.9)/I\gamma(94.1) = 0.176\ 6\ \text{leads to}\\ &\text{Ti}(94.1)/\text{Ti}(83.9) = 91.8\ 3/8.2\ 3\ (2000\text{Io}02).\\ &\alpha(\exp) = 1.38\ 5\ \text{from Ti}(94.1)/\text{Ti}(208.1) = 0.441\ 46\ \text{and}\\ &\alpha(208\gamma) = 0.052\ 5\ (2000\text{Io}02).\\ &\text{A}_2 = +0.103\ 11\ (2000\text{Io}02). \end{aligned}$ |

|                                      |                              | 76                     | <sup>5</sup> Ge( <sup>14</sup> N, | $4n\gamma$ ), <sup>86</sup> Si | r( <b>d,2n</b> γ)    | 1984E              | 1984Bu26,2000Io02 (continued) |                                                                                                                                                                                    |  |
|--------------------------------------|------------------------------|------------------------|-----------------------------------|--------------------------------|----------------------|--------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                      |                              |                        |                                   |                                |                      |                    |                               |                                                                                                                                                                                    |  |
| $\mathrm{E}_{\gamma}$                | $I_{\gamma}^{\dagger}$       | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$              | $\mathbf{E}_{f}$               | $\mathbf{J}_f^{\pi}$ | Mult. <sup>‡</sup> | $\alpha^{e}$                  | Comments                                                                                                                                                                           |  |
| 208.1                                | 130 4                        | 208.1                  | (5)-                              | 0                              | 4-                   |                    |                               | $E_{\gamma}$ : from 2000Io02.<br>A <sub>2</sub> =+0.159 7 (2000Io02).                                                                                                              |  |
| <sup>x</sup> 216 <sup>d</sup><br>313 | 22.3 <sup>@</sup> 5<br>7.0 5 | 4190.7                 | (15+)                             | 3877.7                         | (14+)                | (D)                |                               | $A_2=-0.194$ , $A_4=0$ .<br>Placement based on 314-688-667 cascade<br>in 2000BuZW. Earlier placement was<br>above 3189 level.<br>$A_{2}=-0.34$ <i>l L</i> $A_{4}=-0.09$ <i>l</i> 4 |  |
| <sup>x</sup> 365 <mark>&amp;</mark>  | 18.1.8                       |                        |                                   |                                |                      |                    |                               | $A_2 = -0.32, 8, A_4 = +0.07, 9$                                                                                                                                                   |  |
| x389                                 | 9.4 <sup>@</sup> 13          |                        |                                   |                                |                      |                    |                               | $A_2 = -0.41$ 3, $A_4 = +0.02$ 4.                                                                                                                                                  |  |
| <sup>x</sup> 438 <sup>&amp;</sup>    | 3                            |                        |                                   |                                |                      |                    |                               | 2                                                                                                                                                                                  |  |
| $x_{562}^{b}$<br>$x_{585}^{bc}$      | 6.7 25                       |                        |                                   |                                |                      |                    |                               |                                                                                                                                                                                    |  |
| <sup>x</sup> 662                     | 16.3 5                       |                        |                                   |                                |                      |                    |                               | $A_2 = -0.765, A_4 = +0.165.$                                                                                                                                                      |  |
| 668 <b>∫</b>                         | 24.6 <sup>f</sup> 20         | 886.3                  | (9+)                              | 218.3                          | $(8^{+})$            |                    |                               | $A_2 = -0.44$ 10, $A_4 = +0.12$ 11 for doublet.                                                                                                                                    |  |
| 668 <i>f</i><br>688.4                | 12 <sup><i>f</i></sup> 2     | 3189.3<br>3877.7       | (14 <sup>+</sup> )                | 2521.3<br>3189.3               | (12 <sup>+</sup> )   |                    |                               | $E_{v}$ : from 2000BuZW.                                                                                                                                                           |  |
| <sup>x</sup> 739                     | 13.3 5                       |                        | · · ·                             |                                |                      |                    |                               | $A'_{2} = -0.43 5, A_{4} = +0.06 4.$                                                                                                                                               |  |
| $x_{771}d$<br>$x_{853}bc$            | 3.7 12                       |                        |                                   |                                |                      |                    |                               |                                                                                                                                                                                    |  |
| 933                                  | 11.7 5                       | 2258.4                 |                                   | 1325.4                         | $(10^{+})$           | (Q)                |                               | $A_2 = +0.42$ 9, $A_4 = -0.05$ 10.                                                                                                                                                 |  |
| 1107.08 <sup>a</sup> 15              | 100.0 15                     | 1325.4                 | $(10^{+})$                        | 218.3                          | (8+)                 | (E2)               | $4.96 \times 10^{-4}$         | $A_2 = +0.29 2$ , $A_4 = -0.07 3$ .                                                                                                                                                |  |
| 1195.88 <sup>a</sup> 17              | 39.3 17                      | 2521.3                 | $(12^{+})$                        | 1325.4                         | $(10^{+})$           | (E2)               | $4.26 \times 10^{-4}$         | $A_2 = +0.27 2, A_4 = -0.09 10.$                                                                                                                                                   |  |

<sup>†</sup> From  ${}^{76}\text{Ge}({}^{14}\text{N},4n\gamma)$  at 50 MeV (1984Bu26). Intensities from  ${}^{73}\text{Ge}({}^{16}\text{O},p2n\gamma)$  are also given by 1984Bu26.

<sup>‡</sup> From  $\gamma(\theta)$  and RUL.

# From Adopted Gammas.

<sup>@</sup> Corrected for contamination activity.

<sup>&</sup> Possibly doublet.

<sup>*a*</sup> From <sup>62</sup>Ni(<sup>27</sup>Al,2pnγ) (1985Li11).

<sup>b</sup>  $\gamma$  in coin with 389 $\gamma$ .

<sup>c</sup> From level-scheme figure of 1984Bu26.

 $^{d}$   $\gamma$  in coin with a 562-389 cascade.

<sup>*e*</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

<sup>f</sup> Multiply placed with intensity suitably divided.

<sup>*x*</sup>  $\gamma$  ray not placed in level scheme.

 $^{86}_{39}\mathrm{Y}_{47}$ -3

## <sup>76</sup>Ge(<sup>14</sup>N,4nγ),<sup>86</sup>Sr(d,2nγ) 1984Bu26,2000Io02



 $^{86}_{39} Y_{47}$