⁷⁶Ge(¹⁴N,4nγ),⁷³Ge(¹⁶O,p2n) 2009Ru03,2010Ru07

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Alexandru Negret, Balraj Singh	NDS 124, 1 (2015)	30-Nov-2014				

2009Ru03: E=44-54 MeV beam provided by Tandem accelerator of IFIN-HH, Bucharest. Measured E γ , I γ , n γ coin, $\gamma(\theta)$ using two HPGe detectors.

2010Ru07: E=57 MeV beam provided by Tandem accelerator of IFIN-HH, Bucharest. Measured E γ , I γ , n γ coin, $\gamma\gamma$ coin, half-lives and magnetic dipole moments of isomers using five HPGe detectors. g factors from 2000Io02 reanalyzed. Comparison with shell-model calculations.

⁸⁶ Y	Levels
-----------------	--------

E(level) [†]	J^{π}	T _{1/2}	Comments
0.0	4-		
208.11 10	5-	70 ns 7	$g = -0.083 \ 3 \ (2010Ru07, 2000Io02)$
			$\mu = -0.415 \ 15 \ (2010 \text{Ru} 07)$
			$T_{1/2}$: from nyy(t) (2010Ru07).
218.27 14	$8^{(+)}$	47.2 min 4	$T_{1/2}$: from multi-spectrum scaling (2010Ru07).
242.80 10	2^{-}	29 ns 4	$T_{1/2}$: from ny(t) (2010Ru07).
302.27 12	6+	127 ns 14	$g=+0.63\ 2\ (2010Ru07,2000Io02)$
			μ =+3.78 <i>12</i> (2010Ru07)
			$T_{1/2}$: from n γ (t) (2010Ru07).
303.27 17	$7^{(+)}$		
469.51 22			
476.07 24			
620.77 24			
661.95 <i>13</i>			
742.07 24			
850.42 22	$o(\pm)$		
886.27 21	9(1)		
900.18 14	$\overline{a}(-)$		
1202.94 19	~ / /		
1317.0 3	10(+)		
1323.38 19	$10^{(+)}$		
1408.37 20	9(-)		
1494.08 21	0		
1055 18 22			
1987 38 22	$11^{(+)}$		
2042 67 17	0(-)		
2042.07 17	$10^{(-)}$		
2351 78 10	10^{11}		
2521.5.0	$12^{(+)}$		
2757 8 8	$12 \\ 11(-)$		
2913 5 8	$12^{(-)}$		
3090.6.8	$12 \\ 12^{(-)}$		
3189.4.9	12 + 13(+)		
3302 1 12	$13^{(-)}$		
3454 4 10	$13^{(-)}$		
3877 8 11	$14^{(+)}$		
4010.8.13	$14^{(-)}$		
4073 4 14	$14^{(-)}$		
4192 0 15	15(+)		
4961 6 14	15(-)		
5430 1 14	$16^{(-)}$		
5 150.1 17	10		

⁷⁶Ge(¹⁴N,4nγ),⁷³Ge(¹⁶O,p2n) 2009Ru03,2010Ru07 (continued)

⁸⁶Y Levels (continued)

 $\gamma(^{86}Y)$

E(level)	J^{π}
6412.1 16	$17^{(-)}$
6779.0 16	$18^{(-)}$
7216.1 19	$19^{(-)}$

[†] From least-squares fit to $E\gamma$ values below 2500 keV excitation. Above this energy, level energies are taken from ${}^{52}Cr({}^{37}Cl,2pn\gamma)$ experiment by 2009Ru03 (see the separate dataset).

E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.	δ	α^{\ddagger}	Comments
(10.2 2)		218.27	$8^{(+)}$	208.11 5-	[E3]			
84.0 1	0.6 3	302.27	6+	218.27 8 ⁽⁺⁾				
85.0 1	62	303.27	$7^{(+)}$	218.27 8 ⁽⁺⁾				
92.7 1	11.3	2351.78	$11^{(-)}$	$2259.08 \ 10^{(-)}$	D(+O)	0.00 2		$A_2 = -0.224; A_4 = +0.035$
94.1 <i>I</i>	3.6 6	302.27	6+	208.11 5	-(••			
173.8 2	0.4 1	476.07		302.27 6+				
177.1		3090.6	$12^{(-)}$	2913.5 12 ⁽⁻⁾	D+Q	-0.3 2		$A_2 = +0.25 8; A_4 = +0.03 10$
208.1 <i>l</i>	100 6	208.11	5-	0.0 4-	M1+E2	+0.8 +4-2	0.044 10	$A_2 = +0.45 5; A_4 = +0.04 6$ $\alpha(K) = 0.039 9; \alpha(L) = 0.0048 12;$ $\alpha(M) = 0.00082 20$
								$\alpha(N) = 0.00011 \ 3; \ \alpha(O) = 6.5 \times 10^{-6} \ 13$
			10()		D ()			A_2 and A_4 from ny coin data.
216.4 1	91	2259.08	$10^{(-)}$	2042.67 9(-)	D(+Q)	$+0.01\ 2$		$A_2 = -0.20 3; A_4 = -0.01 4$
238.21	1.5 5	900.18	2-	001.95				
242.01	1.21 0.41	242.00 460.51	Z	$208.11.5^{-}$				
303.0.2	0.41	2250.08	$10^{(-)}$	1055.18				
314.2	0.5 1	A102.0	15(+)	$3877.8 14^{(+)}$	D±O	_0.09.2		$\Delta_{2} = -0.37.3 + \Delta_{4} = \pm 0.02.4$
318.5.2	031	620.77	15	302 27 6+	DŦŲ	-0.09 2		$A_2 = -0.575, A_4 = +0.024$
332.6	0.5 1	3090.6	$12^{(-)}$	$2757.8 11^{(-)}$	$D \pm O$	-0.08.3		$\Delta_{2} = -0.335$ $\Delta_{4} = -0.036$
359.5 2	2.2.4	661.95	12	$302.27 6^+$	DIQ	0.00 5		112-0.000, 114-0.000
363.8		3454.4	$13^{(-)}$	$3090.6 12^{(-)}$				
364.4 2	4.96	2351.78	$11^{(-)}$	$1987.38 \ 11^{(+)}$				
366.9		6779.0	$18^{(-)}$	6412.1 17 ⁽⁻⁾	D(+O)	+0.022		$A_2 = -0.18$ 3: $A_4 = -0.01$ 4
388.6		3302.1	$13^{(-)}$	2913.5 $12^{(-)}$				2
437.1		7216.1	$19^{(-)}$	6779.0 18 ⁽⁻⁾	D+O	-0.16 4		$A_2 = -0.496; A_4 = +0.087$
439.8 2	3.3 5	742.07		302.27 6+				Σ ······
468.5		5430.1	$16^{(-)}$	4961.6 15 ⁽⁻⁾	D+Q	-0.10 3		$A_2 = -0.37 4$; $A_4 = +0.00 5$
540.9		3454.4	$13^{(-)}$	2913.5 12 ⁽⁻⁾	D+Q	-0.13 4		$A_2 = -0.41 6; A_4 = -0.03 8$
548.6 2	1.2 3	2042.67	9(-)	1494.08 8(-)				2
556.4		4010.8	$14^{(-)}$	3454.4 13 ⁽⁻⁾	D+Q	-0.15 2		$A_2 = -0.46\ 2;\ A_4 = +0.06\ 3$
561.8		2913.5	$12^{(-)}$	2351.78 11 ⁽⁻⁾				2 7 1
574.9 2	0.7 1	1317.0		742.07				
597.9 2	0.6 3	900.18		302.27 6+				
634.1 2	2.2 4	2042.67	9(-)	1408.57 9 ⁽⁺⁾	D(+Q)	-0.1 2		A ₂ =+0.34 8; A ₄ =-0.09 10
642.3 2	1.2 3	850.42		208.11 5-				
662.0 2	0.8 3	661.95		0.0 4-				
662.0 2	7.3 8	1987.38	11(+)	1325.38 10 ⁽⁺⁾	D+Q	-0.05 2		$A_2 = -0.32 \ 3; \ A_4 = +0.06 \ 4$
668.0 2	3.1 5	886.27	9(+)	218.27 8 ⁽⁺⁾				
688.4		3877.8	$14^{(+)}$	3189.4 13 ⁽⁺⁾	D+Q	-0.11 3		$A_2 = -0.38 \ 4; \ A_4 = -0.04 \ 5$

Continued on next page (footnotes at end of table)

			76 G	⁷⁶ Ge(¹⁴ N,4nγ), ⁷³ Ge(¹⁶ O,p2n)		2009Ru	03,2010Ru07 (continued)	
γ ⁽⁸⁶ Y) (continued)								
E_{γ}^{\dagger}	Iγ	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.	δ	Comments	
692.2 2	1.3 <i>3</i>	900.18		208.11 5-				
738.9		3090.6	$12^{(-)}$	2351.78 11 ⁽⁻⁾	D+Q	-0.10 2	A ₂ =-0.36 3; A ₄ =-0.04 4	
771.3		4073.4	$14^{(-)}$	3302.1 13 ⁽⁻⁾	D+Q	-0.09 5	$A_2 = -0.36$ 7; $A_4 = +0.00$ 9	
839.7 2	1.9 <i>3</i>	2042.67	9(-)	1202.94 7 ⁽⁻⁾	Q		$A_2 = +0.285; A_4 = -0.056$	
850.5 2	2.8 5	2259.08	$10^{(-)}$	1408.57 9 ⁽⁺⁾	D(+Q)	+0.03 3	A ₂ =-0.16 4; A ₄ =-0.03 5	
888.2		4961.6	$15^{(-)}$	4073.4 14 ⁽⁻⁾				
933.7 2	6.4 8	2259.08	$10^{(-)}$	1325.38 10 ⁽⁺⁾	D(+Q)	0.0 2	A ₂ =+0.38 <i>3</i> ; A ₄ =+0.00 <i>4</i>	
950.8		4961.6	$15^{(-)}$	4010.8 14 ⁽⁻⁾	D(+Q)	-0.04 3	$A_2 = -0.29 5; A_4 = +0.07 6$	
994.8 <i>2</i>	3.2 <i>3</i>	1202.94	$7^{(-)}$	208.11 5-	Q		A ₂ =+0.29 7; A ₄ =+0.00 9	
1005.0 3	0.4 1	1855.4		850.42				
1026.4 3	4.2 6	2351.78	$11^{(-)}$	1325.38 10 ⁽⁺⁾	D(+Q)	+0.01 1	$A_2 = -0.22 2; A_4 = +0.04 3$	
1055.0 3	1.4 <i>3</i>	1955.18		900.18				
1101.1 5	1.3 1	1987.38	$11^{(+)}$	886.27 9 ⁽⁺⁾	Q		$A_2 = +0.26 8; A_4 = +0.03 14$	
1105.3 4	4.9 9	1408.57	9(+)	303.27 7 ⁽⁺⁾	Q		$A_2 = +0.30 4$; $A_4 = -0.06 5$	
1107.1 2	56 4	1325.38	$10^{(+)}$	218.27 8 ⁽⁺⁾	Q		$A_2 = +0.32 \ l; A_4 = -0.07 \ l$	
1190.3 <i>3</i>	1.8 <i>3</i>	1408.57	$9^{(+)}$	218.27 8 ⁽⁺⁾				
1190.8 <i>3</i>	1.8 <i>3</i>	1494.08	8(-)	303.27 7 ⁽⁺⁾				
1196.1		2521.5	$12^{(+)}$	1325.38 10 ⁽⁺⁾	Q		$A_2 = +0.30 \ l; A_4 = -0.06 \ l$	
1202.0		3189.4	$13^{(+)}$	1987.38 11 ⁽⁺⁾	Q		$A_2 = +0.39$ 7; $A_4 = -0.05$ 9	
1275.8 <i>3</i>	1.5 3	1494.08	$8^{(-)}$	218.27 8 ⁽⁺⁾				
1348.9		6779.0	$18^{(-)}$	5430.1 16 ⁽⁻⁾				
1356.3		3877.8	$14^{(+)}$	$2521.5 12^{(+)}$	Q		$A_2 = +0.34 6; A_4 = -0.12 8$	
1372.8 <i>3</i>	1.8 <i>3</i>	2259.08	$10^{(-)}$	886.27 9 ⁽⁺⁾	D(+Q)	-0.02 3	$A_2 = -0.26 4; A_4 = +0.05 6$	
1419.3		5430.1	$16^{(-)}$	4010.8 14 ⁽⁻⁾	Q		A ₂ =+0.43 14; A ₄ =+0.03 18	
1432.2		2757.8	$11^{(-)}$	1325.38 10 ⁽⁺⁾	D(+Q)	-0.02 3	A ₂ =-0.25 4; A ₄ =+0.02 5	
1450.5		6412.1	$17^{(-)}$	4961.6 15 ⁽⁻⁾	Q		A ₂ =+0.31 15; A ₄ =+0.05 18	
1824.4 4	4.5 9	2042.67	9(-)	218.27 8 ⁽⁺⁾	D(+Q)	0.00 2	$A_2 = -0.23 \ 3; \ A_4 = +0.02 \ 4$	

[†] Above 2500 keV excitation energy, γ -ray energies are taken from ${}^{52}Cr({}^{37}Cl,2pn\gamma)$ experiment by 2009Ru03 (see separate dataset).

[‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $^{86}_{39}\mathrm{Y}_{47}$

4

 ${}^{86}_{39}Y_{47}$