⁵²Cr(³⁷Cl,2pnγ) 2009Ru03

	Histor	у	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Alexandru Negret, Balraj Singh	NDS 124, 1 (2015)	30-Nov-2014

E=115 MeV beam provided by XTU Tandem accelerator at INFN-Legnaro. Measured E γ , I γ , n γ coin, $\gamma(\theta)$ using GASP array of 40 Compton-suppressed HPGe detectors and 80 BGO detectors as a multiplicity filter. Comparisons with shell-model calculations.

⁸⁶Y Levels

E(level) [†]	\mathbf{J}^{π}	T _{1/2}		Comments
0.0	4-			
208.00 10	5-			
218.30 [‡] 18	$8^{(+)}$	47.4 min 4	$T_{1/2}$: from Adopted Levels.	
302.10 13	6+		1/2 1	
303.30 20	$7^{(+)}$			
662.00 14				
850.30 14				
886.30 [#] 20	9(+)			
900.20 15	-()			
1202.61 18	7(-)			
1325.41 [‡] <i>19</i>	$10^{(+)}$			
1408.61 <i>19</i>	9(+)			
1494.01 20	8(-)			
1854.9 3	(8)			
1954.6 3	(+)			
1987.41" 20	$11^{(+)}$			
2042.31 18	$9^{(-)}$			
2258.71 78	$10^{(-)}$			
2351.51 19	11()			
2521.52+ 21	12(+)			
2757.62 ^{••} 20	$11^{(-)}$			
2913.12 20	12(-)			
3090.22 ^{<i>x</i>} 20	$12^{(-)}$			
3182.62 23	12(+)			
3189.42 [#] 21	13(+)			
3301.72 22	13(-)			
3454.02 [@] 21	13(-)			
3654.92 21	$13^{(+)}$			
3877.82 [‡] 22	$14^{(+)}$			
4010.42 ^{&} 22	$14^{(-)}$			
4073.02 24	$14^{(-)}$			
4192.03 [#] 22	$15^{(+)}$			
4398.7 <i>3</i>	$14^{(+)}$			
4465.93 23	$14^{(-)}$			
4526.33 22	$14^{(+)}$			
4709.82 [@] 23	$15^{(-)}$			
4884.8 <i>3</i>	$15^{(+)}$			
4961.23 23	$15^{(-)}$			
4977.0 <i>3</i>	$14^{(+)}$			
5094.73 23	$15^{(+)}$			
5362.74 24	$15^{(+)}$			
5429.73 ^{&} 23	16 ⁽⁻⁾			

				⁵² Cr(³⁷ Cl,2pn	γ) <mark>2</mark> 0	09Ru03 (contin	ued)
				⁸⁶ Y	Levels (continued)	
E(level) [†] 5662.5 3 5728.1 3 5777.14 [‡] 24 5992.7 [#] 4 6009.64 25 6087.0 [@] 3	$\frac{J^{\pi}}{15^{(+)}}$ $\frac{16^{(+)}}{17^{(+)}}$ $\frac{(16^{-})}{17^{(-)}}$	$\frac{\text{E(level)}^{\dagger}}{6394.84\ 25}$ $6411.74\ 23$ $6778.64^{\&}\ 24$ $6868.4^{\ddagger}\ 3$ $7081.8\ 3$ $7215.7^{\textcircled{0}}\ 3$	$\frac{J^{\pi}}{17^{(+)}}$ $\frac{17^{(-)}}{18^{(-)}}$ $18^{(+)}$ $19^{(-)}$ $12^{(+)}$		$\frac{J^{\pi}}{20^{(-)}}$ $\frac{21^{(-)}}{20^{(+)}}$ (20^{+})	$\frac{\text{E(level)}^{\dagger}}{10736.6?^{\ddagger} 4}$ $\frac{10996.0 5}{11230.4?^{\#} 4}$ $\frac{11781.2?^{\ddagger} 4}{12414.7?^{\#} 5}$	$ \begin{array}{c} J^{\pi} \\ (22^+) \\ (22^+) \\ (23^+) \\ (24^+) \\ (25^+) \end{array} $
6188.5 <i>3</i> 6222.84 <i>25</i>	17 ⁽⁺⁾	7611.6 " 3 7689.9 3	19 ⁽⁺⁾ 19 ⁽⁺⁾	9469.1# 3 10610.0 [@] 5	$21^{(+)}$ $23^{(-)}$		

[†] From least-squares fit to $E\gamma$ values. [‡] Band(A): Band based on $8^{(+)}, \alpha=0$. [#] Band(a): Band based on $9^{(+)}, \alpha=1$. [@] Band(B): Band based on $11^{(-)}, \alpha=1$. [&] Band(b): Band based on $12^{(-)}, \alpha=0$.

 $\gamma(^{86}Y)$

Expected values of R(ADO) are: 1.36 for $\Delta J=2$, quadrupole; 1.46 for $\Delta J=0$, dipole and 0.82 for $\Delta J=1$, dipole transition.

Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.	Comments
(10.3 2)		218.30	8(+)	208.00 5-	[E3]	
85.0 1	72	303.30	$7^{(+)}$	218.30 8 ⁽⁺⁾	D	R(ADO)=0.86 17.
92.6 1	26 3	2351.31	$11^{(-)}$	2258.71 10 ⁽⁻⁾	D	R(ADO)=0.85 4.
94.1 <i>1</i>	1.4 4	302.10	6+	208.00 5-		
177.1 <i>1</i>	0.9 2	3090.22	$12^{(-)}$	2913.12 12 ⁽⁻⁾	D	R(ADO)=1.7 4.
187.4 <i>3</i>	0.7 2	2042.31	9(-)	1854.9 (8)	(D)	R(ADO)=1.02 14.
208.0 1	131 9	208.00	5-	0.0 4-	D+Q	R(ADO)=1.75 13.
216.4 1	18 2	2258.71	$10^{(-)}$	2042.31 9 ⁽⁻⁾	D	R(ADO)=0.81 2.
222.9 1	3.1 4	3877.82	$14^{(+)}$	3654.92 13 ⁽⁺⁾	D	R(ADO)=0.87 10.
238.2 1	0.8 2	900.20		662.00		
304.1 <i>3</i>	1.1 2	2258.71	$10^{(-)}$	1954.6		
314.2 1	11 <i>I</i>	4192.03	$15^{(+)}$	3877.82 14 ⁽⁺⁾	D	R(ADO)=0.77 3.
332.6 1	7.4 5	3090.22	$12^{(-)}$	2757.62 11 ⁽⁻⁾	D	R(ADO)=0.85 4.
359.9 <i>1</i>	0.6 2	662.00		302.10 6+		
363.8 1	24 2	3454.02	$13^{(-)}$	$3090.22 \ 12^{(-)}$	D	R(ADO)=0.68 7.
363.9 1	8.4 7	2351.31	$11^{(-)}$	1987.41 11 ⁽⁺⁾	D	R(ADO)=1.44 11.
366.9 1	12 <i>I</i>	6778.64	$18^{(-)}$	6411.74 17 ⁽⁻⁾	D	R(ADO)=0.82 3.
385.7 1	2.1 2	5362.74	$15^{(+)}$	4977.0 14 ⁽⁺⁾	D	R(ADO)=0.84 10.
388.6 1	17 <i>1</i>	3301.72	$13^{(-)}$	2913.12 12 ⁽⁻⁾	D	R(ADO)=0.73 3.
402.1 1	1.7 2	6411.74	$17^{(-)}$	6009.64 (16 ⁻)		
414.4 1	4.6 4	5777.14	$16^{(+)}$	5362.74 15(+)	D	R(ADO)=0.89 7.
437.1 <i>1</i>	17 <i>1</i>	7215.7	$19^{(-)}$	6778.64 18 ⁽⁻⁾	D	R(ADO)=0.69 4.
439.1 <i>3</i>	1.7 7	1325.41	$10^{(+)}$	886.30 9 ⁽⁺⁾		
440.3 1	9.1 7	8443.6	$21^{(-)}$	8003.3 20 ⁽⁻⁾	D	R(ADO)=0.73 5.
445.7 1	12 <i>I</i>	6222.84	$17^{(+)}$	5777.14 16 ⁽⁺⁾	D	R(ADO)=0.65 4.
460.4 1	3.1 4	6188.5		5728.1		

⁵²Cr(³⁷Cl,2pnγ) 2009Ru03 (continued)

$\gamma(^{86}\text{Y})$ (continued)

Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	Comments
465.5 2	1.8 <i>3</i>	3654.92	13 ⁽⁺⁾	3189.42	13 ⁽⁺⁾		
468.5 1	6.2 6	5429.73	$16^{(-)}$	4961.23	$15^{(-)}$	D	R(ADO)=0.73 5.
472.3 1	3.5 4	3654.92	$13^{(+)}$	3182.62	$12^{(+)}$		
473.6 2	1.6 3	6868.4	$18^{(+)}$	6394.84	$17^{(+)}$		
486.1 <i>1</i>	3.7 5	4884.8	$15^{(+)}$	4398.7	$14^{(+)}$	D	R(ADO)=0.92 14.
493.8 <i>1</i>	2.9 3	11230.4?	(23^{+})	10736.6?	(22^{+})	D	R(ADO)=0.56 9.
495.3 <i>1</i>	2.9 3	4961.23	$15^{(-)}$	4465.93	$14^{(-)}$	D	R(ADO)=0.69 7.
529.8 <i>3</i>	1.3 <i>3</i>	7611.6	$19^{(+)}$	7081.8			
540.9 1	4.4 4	3454.02	$13^{(-)}$	2913.12	$12^{(-)}$	D	R(ADO)=0.78 7.
548.3 1	1.9 <i>3</i>	2042.31	9(-)	1494.01	$8^{(-)}$	D	R(ADO)=0.94 9.
550.8 1	2.0 2	11781.2?	(24^{+})	11230.4?	(23 ⁺)	D	R(ADO)=0.77 7.
556.4 1	24 2	4010.42	$14^{(-)}$	3454.02	13(-)	D	R(ADO)=0.69 3.
560.3 2	1.6 3	6222.84	$17^{(+)}$	5662.5	15 ⁽⁺⁾		
561.8 <i>1</i>	26 2	2913.12	$12^{(-)}$	2351.31	$11^{(-)}$	D	R(ADO)=0.69 3.
568.4 1	3.6 4	5094.73	$15^{(+)}$	4526.33	$14^{(+)}$	D	R(ADO)=0.67 9.
617.7 <i>1</i>	5.6 6	6394.84	$17^{(+)}$	5777.14	$16^{(+)}$	D	R(ADO)=0.70 11.
633.5 2	1.4 2	12414.7?	(25^+)	11781.2?	(24 ⁺)	D	R(ADO)=0.96 8.
633.7 1	3.8 7	2042.31	9(-)	1408.61	9(+)	D	R(ADO)=1.41 17.
642.3 1	0.8 3	850.30		208.00	5-	_	
645.6 <i>I</i>	10 1	6868.4	$18^{(+)}$	6222.84	17(+)	D	R(ADO)=0.67 4.
657.3 3	2.1 5	6087.0	17(-)	5429.73	16(-)	D	R(ADO)=0.64 9.
661.1 ^T 3	2.1 15	3182.62	$12^{(+)}$	2521.52	$12^{(+)}$		
662.0 <i>3</i>	0.5 2	662.00	$\langle \cdot \rangle$	0.0	4-		
662.0 <i>1</i>	20 2	1987.41	$11^{(+)}$	1325.41	$10^{(+)}$	D	R(ADO)=0.76 4.
667.9 <i>1</i>	26 2	3189.42	13(+)	2521.52	12(+)	D	R(ADO)=0.74 4.
668.0 <i>1</i>	82	886.30	9(+)	218.30	8(+)	D	R(ADO)=0.81 7.
682.4 <i>1</i>	10 1	5777.14	$16^{(+)}$	5094.73	15(+)	D	R(ADO)=0.68 4.
688.4 <i>I</i>	11 1	3877.82	$14^{(+)}$	3189.42	13(+)	D	R(ADO)=0.74 7.
692.2.2	0.5 2	900.20	1 5(+)	208.00	5		
692.8 5	1.3.5	4884.8	$15^{(+)}$	4192.03	$15^{(+)}$	D	
699.4 <i>I</i>		4709.82	$15^{(-)}$	4010.42	$14^{()}$	D	R(ADO) = 0.63 3.
/19.9 1	5.5 0	5429.73	$10^{(-)}$	4709.82	15()	D	R(ADO) = 0.65 4.
738.9 1	22.2	3090.22	$12^{(+)}$	2351.31	$\prod()$	D	R(ADO) = 0.64 3.
743.2 1	8 1	7611.6	$19^{(1)}$	6868.4	$18^{(1)}$	D	R(ADO) = 0.65 3.
771.37	10 1	4073.02	$14^{(+)}$	3301.72	$13^{(+)}$	D	R(ADO)=0.62.3.
/84.0 /	0.73	8474.6	$20^{(-)}$	7689.9	$19^{(1)}$	D	
/8/.01	121	8003.3	$20^{(+)}$	/215./	19(+)	D	R(ADO) = 0.69 3.
821.5 1	3.9 5	7689.9	15(+)	6868.4	$18^{(+)}$	D	R(ADO) = 0.79 9.
830.4 2	2.5 4	5362.74	$15^{(1)}$	4526.33	$14^{(-)}$	D	R(ADO) = 0.77 8.
839.71	2.8 3	2042.31	9()	1202.61	15(+)	Q	$R(ADO)=1.24 \ \delta.$
843.3 2	2.4 5	5728.1	10(-)	4884.8	$13^{(+)}$	D	$\mathbf{P}(\mathbf{A},\mathbf{D},\mathbf{O}) = 0.94.7$
850.1 2	5.0 8	2258.71	10()	1408.61	$9^{(+)}$	D	R(ADO) = 0.84 /.
859.0 2	3.9 0	/081.8	$\mathbf{a}_{0}(\pm)$	6222.84	1/(1)	D	R(ADO) = 0.78 I2.
862.9 1	4.3 3	8474.6	$20^{(1)}$	/611.6	$19^{(+)}$	D	$R(ADO) = 0.68 \ 11.$
8/1.4 1	72	4526.33	$14^{(1)}$	3654.92	$13^{(1)}$	D	R(ADO)=0.79 15.
888.2 <i>3</i>	1.4 3	4901.23	$15^{(-)}$	40/3.02	$14^{(+)}$	D	
902.72	4.2 8	5094.73	$10^{(1)}$	4192.03	$10^{(+)}$	D	K(ADO) = 1.73.
933.3 1	8.88	2258.71	$10^{(-)}$	1525.41	$10^{(1)}$	D	K(ADO) = 1.32 9.
950.8 1	3.6 5	4961.23	15()	4010.42	$14^{(-)}$	D	K(ADO) = 0.76 /.
982.0 I	4.2 4	0411./4	1/()	5429.73	$10^{(+)}$	D	K(ADO)=0.00 /.
994.3 <i>I</i>	1.9 4	9469.1	$2\Gamma^{(\prime)}$	84/4.6	20(1)	D	K(ADO)=0.5 / /.

Continued on next page (footnotes at end of table)

⁵²Cr(³⁷Cl,2pnγ) 2009Ru03 (continued)

$\gamma(^{86}\text{Y})$ (continued)

E_{γ}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult.		Comments
994.6.2	2.7.2	1202.61	7(-)	208.00	5-	0	R(ADO) = 1.28 12.	
1002.6 /	4.2 15	4192.03	$15^{(+)}$	3189.42	$13^{(+)}$			
1004.6 5	1.0 4	1854.9	(8)	850.30				
1025.9 <i>1</i>	7.3 8	2351.31	11(-)	1325.41	$10^{(+)}$	D	R(ADO)=0.86 14.	
1054.4 4	1.0 2	1954.6		900.20				
1101.1 <i>3</i>	3.6 6	1987.41	$11^{(+)}$	886.30	9(+)			
1105.3 2	51	1408.61	9(+)	303.30	$7^{(+)}$	Q	R(ADO)=1.21 17.	
1107.1 <i>1</i>	100 8	1325.41	$10^{(+)}$	218.30	8(+)	Q	R(ADO)=1.49 9.	
1128.7 <i>3</i>	2.2 4	7215.7	$19^{(-)}$	6087.0	$17^{(-)}$			
1133.4 <i>I</i>	91	3654.92	$13^{(+)}$	2521.52	$12^{(+)}$	D	R(ADO)=0.76 8.	
1164.2 2	2.9 4	4465.93	$14^{(-)}$	3301.72	$13^{(-)}$	D	R(ADO)=0.59 7.	
1190.3 5	1.9 8	1408.61	9(+)	218.30	$8^{(+)}$	D	R(ADO)=0.54 8.	
1190.7 4	1.8 6	1494.01	$8^{(-)}$	303.30	$7^{(+)}$	D	R(ADO)=0.80 10.	
1195.2 [†] 8	<1.8	3182.62	$12^{(+)}$	1987.41	$11^{(+)}$			
1196.1 7	51 4	2521.52	$12^{(+)}$	1325.41	$10^{(+)}$	0	R(ADO)=1.54 7.	
1202.0 2	5.1.6	3189.42	$13^{(+)}$	1987.41	$11^{(+)}$	ò	(
1209.3 2	3.9 6	4398.7	$14^{(+)}$	3189.42	$13^{(+)}$	Ď	R(ADO)=0.62 8.	
1216.9.3	2.2.4	5094.73	$15^{(+)}$	3877.82	$14^{(+)}$	_	(
1275.7.5	0.8 2	1494.01	8(-)	218.30	8 ⁽⁺⁾	D	R(ADO) = 1.3.3.	
1303.7 3	3.3 6	6188.5		4884.8	$15^{(+)}$	_	(
1329.4 6	1.0.3	5728.1		4398.7	$14^{(+)}$			
1336.9 4	2.4.5	4526.33	$14^{(+)}$	3189.42	$13^{(+)}$			
1348.9 /	7.5.7	6778.64	$18^{(-)}$	5429.73	$16^{(-)}$	0	R(ADO) = 1.45.9	
1356.3.2	6.3.6	3877.82	$14^{(+)}$	2521.52	$12^{(+)}$	õ	R(ADO) = 1.46 11	
1372.4.3	2.9.4	2258.71	$10^{(-)}$	886.30	9 (+)	Ď	R(ADO)=0.77.5	
1375.7.2	3.1.5	4465.93	$14^{(-)}$	3090.22	$12^{(-)}$	0	$R(ADO) = 1.44 \ 18$	
1377.2.5	1.2.3	6087.0	$17^{(-)}$	4709.82	$15^{(-)}$	õ	R(ADO) = 1.33.20	
1419.3 /	5.2.5	5429.73	$16^{(-)}$	4010.42	$14^{(-)}$	õ	R(ADO) = 1.46.9	
1432.2 /	91	2757.62	$11^{(-)}$	1325.41	$10^{(+)}$	Ď	R(ADO)=0.82 8.	
1450.5 /	4.3 6	6411.74	$17^{(-)}$	4961.23	$15^{(-)}$	0	R(ADO)=1.56 12.	
1501.4.3	2.5 4	7689.9	$19^{(+)}$	6188.5		×.	()	
1507.2 4	1.6 4	4961.23	$15^{(-)}$	3454.02	$13^{(-)}$	0	R(ADO)=1.51 13.	
1543.7 2	1.8 4	6009.64	(16^{-})	4465.93	$14^{(-)}$		(-)	
1585.1 4	1.7.3	5777.14	$16^{(+)}$	4192.03	$15^{(+)}$	D	R(ADO)=0.70 12.	
1637.7 3	2.8 5	10996.0	(22^{+})	9358.3	(20^{+})	Q	R(ADO)=1.23 15.	
1667.5 7	1.1 4	3654.92	$13^{(+)}$	1987.41	$11^{(+)}$	-		
1668.3 <i>3</i>	3.3 5	9358.3	(20^{+})	7689.9	$19^{(+)}$	(D)	R(ADO)=0.91 14.	
1695.4 <i>3</i>	3.5 6	4884.8	$15^{(+)}$	3189.42	$13^{(+)}$	Q	R(ADO)=1.13 18.	
1697.2 8	0.5 2	7689.9	$19^{(+)}$	5992.7	$17^{(+)}$			
1702.0 9	0.8 2	6411.74	$17^{(-)}$	4709.82	$15^{(-)}$			
1746.6 <i>3</i>	0.7 2	9358.3	(20^{+})	7611.6	$19^{(+)}$			
1784.7 4	1.6 6	5662.5	$15^{(+)}$	3877.82	$14^{(+)}$	D	R(ADO)=0.76 22.	
1787.6 <i>3</i>	2.0 6	4977.0	$14^{(+)}$	3189.42	$13^{(+)}$			
1800.7 3	3.7 6	5992.7	$17^{(+)}$	4192.03	$15^{(+)}$	Q	R(ADO)=1.62 14.	
1824.0 <i>1</i>	8 1	2042.31	9(-)	218.30	8(+)	D	R(ADO)=0.88 5.	
1857.2 <i>3</i>	51	3182.62	$12^{(+)}$	1325.41	$10^{(+)}$	Q	R(ADO)=1.24 20.	
1877.2 4	2.6 5	4398.7	$14^{(+)}$	2521.52	$12^{(+)}$	Q	R(ADO)=1.31 20.	
1899.3 6	1.3 3	5777.14	16 ⁽⁺⁾	3877.82	$14^{(+)}$	-		
1905.3 <i>3</i>	2.5 4	5094.73	$15^{(+)}$	3189.42	$13^{(+)}$	Q	R(ADO)=1.6 3.	
2004.8 3	3.7 6	4526.33	$14^{(+)}$	2521.52	$12^{(+)}$	Q	R(ADO)=1.21 25.	
2098.6 9	0.8 3	8091.4		5992.7	$17^{(+)}$	-		

Continued on next page (footnotes at end of table)

⁵²Cr(³⁷Cl,2pnγ) **2009Ru03** (continued)

$\gamma(^{86}\text{Y})$ (continued)

Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	Comments
2166.3 3	2.2 3	10610.0	23(-)	8443.6	21 ⁽⁻⁾	Q	R(ADO)=1.46 <i>18</i> .
2228.0 4	1.6 3	9443.8		7215.7	$19^{(-)}$		
2262.0 2	2.8 3	10736.6?	(22^{+})	8474.6	$20^{(+)}$	(Q)	R(ADO)=1.4 5.
2455.5 8	1.0 5	4977.0	$14^{(+)}$	2521.52	$12^{(+)}$		

 † Placement of transition in the level scheme is uncertain.

 ${}^{86}_{39}Y_{47}$

⁵²Cr(³⁷Cl,2pnγ) 2009Ru03

 $^{86}_{39} Y_{47}$

 $^{86}_{39} Y_{47}$

 ${}^{86}_{39}\mathrm{Y}_{47}$

 ${}^{86}_{39}Y_{47}$