History										
Туре	Author	Citation	Literature Cutoff Date							
Full Evaluation	Alexandru Negret, Balraj Singh	NDS 124, 1 (2015)	30-Nov-2014							

Parent: ⁸⁶Y: E=0.0; $J^{\pi}=4^-$; $T_{1/2}=14.74$ h 2; $Q(\varepsilon)=5240$ 14; $\%\varepsilon+\%\beta^+$ decay=100.0

⁸⁶Υ-Q(ε): from 2012Wa38.

1970Ra06 (also 1969Ra08): Measured E γ , I γ , $\gamma\gamma$ using NaI and Ge(Li) detectors and ce with a β -ray spectrometer. $\gamma\gamma(\theta)$: 1984Ak02, 1975Be59, 1970Ar03, 1962Ya01.

1969Ar25: measured E γ , I γ . About 85 γ rays reported. Strong γ rays agree in energy and intensity with those from 1970Ra06. A large number of weak lines listed below remain unconfirmed.

1965Va02: measured γ , ce, E β , I β , $\beta\gamma$, $\gamma\gamma$, β^{-} shape.

1962Ya01: β and shape factor.

T_{1/2}(⁸⁶Y): 1972Em01, 1951Ca46, 1951Hy24.

⁸⁶Sr Levels

E(level)	$J^{\pi \dagger}$	Comments
0.0	0^{+}	
1076.76 8	2+	
1854.26 8	2+	
2229.89 9	4+	
2482.02 9	3-	
2642.27 23	2+	
2672.98 10	5-	
2788.5 4	2+	This level was treated as tentative in 1970Ra06, but several other reactions confirm its existence.
2878.38 9	$(4)^+$	
2997.47 10	3-	
3055.90 11	5-	
3185.34 9	(3) ⁻	
3291.33 16	6-	
3317.74 10	(5)-	
3362.17 12	4+	
3500.07 11	(3,4,5)-	
3555.87 13	(4^{+})	
3645.05 10	(3 ⁻)	
3686.77 20	3-	
3765.81 10	3-,4-,5-	
3775.04? 19	$(4,5)^+$	
3831.17 13	(3,4)-	
3871.6 4	3-	
3926.10 10	(4)+	
3942.64 19	3-	
3969.01 14	3-,4-,5-	
4146.28 23	3,4	
4206.18 12	(3,4,5)	
4339.4? 15	2-	
4410.7 3	3 2 4(±)	
4/18.1 17	$3,4^{(+)}$	
4954 6	3,4(+)	

[†] From Adopted Levels.

1

⁸⁶Υ ε decay (14.74 h) 1970Ra06 (continued)

ε, β^+ radiations

E(decay)	E(level)	$\mathrm{I}\beta^+$ †	Ιε [†]	Log ft	$I(\varepsilon + \beta^+)^{\dagger}$	Comments
$(286^{\ddagger} 15)$ (522 14) (829 14) $(901^{\ddagger} 14)$	4954 4718.1 4410.7		0.05 5 0.050 <i>10</i> 0.184 <i>21</i>	6.9 <i>5</i> 7.42 <i>9</i> 7.26 <i>6</i>	0.05 <i>5</i> 0.050 <i>10</i> 0.184 <i>21</i>	ε K=0.8645 7; ε L=0.1110 6; ε M+=0.02448 15 ε K=0.8700 2; ε L=0.10663 15; ε M+=0.02338 4 ε K=0.8723; ε L=0.10477 6; ε M+=0.02292 2
$\begin{array}{c} (901^{+} 14) \\ (1034 14) \\ (1094 14) \\ (1271 14) \end{array}$	4339.4? 4206.18 4146.28 3969.01	0.0038 10	$0.87\ 7$ $0.69\ 4$ $1.38\ 7$	6.78 <i>4</i> 6.93 <i>3</i> 6.764 <i>25</i>	$0.87\ 7$ $0.69\ 4$ $1.38\ 7$	ε K=0.8731; ε L=0.10415 4; ε M+=0.022761 9 ε K=0.8732; ε L=0.10402 4; ε M+=0.022726 8 av E β =114.3 60; ε K=0.8713 6; ε L=0.1034 1; ε M=0.02258 3
(1297 14)	3942.64	0.0029 7	0.70 8	7.08 5	0.70 8	av E β =125.5 60; ε K=0.8701 8; ε L=0.10322 12;
(1314 14)	3926.10	0.035 7	6.65 18	6.109 16	6.68 18	av $E\beta$ =132.6 60; ε K=0.8692 9; ε L=0.10308 13; ε M+-0.0251 3
(1368 14)	3871.6	0.0035 6	0.335 24	7.44 4	0.338 24	av E β =155.8 60; ε K=0.8649 15; ε L=0.10249 20; ε M+=0.0238 5
(1409 14)	3831.17	0.22 4	14.2 12	5.84 4	14.4 12	av E β =173.0 60; ϵ K=0.8603 20; ϵ L=0.10188 25; ϵ M+=0.02224 6
(1465 [‡] <i>14</i>)	3775.04?	0.011 2	0.41 5	7.42 6	0.42 5	av $E\beta$ =196.9 60; ε K=0.851 3; ε L=0.1008 4; ε M+=0.02200 8
(1474 14)	3765.81	0.26 3	9.03 24	6.077 15	9.29 24	av $E\beta$ =200.8 60; ε K=0.850 3; ε L=0.1005 4; ε M+=0.02195 8
(1553 14)	3686.77	0.057 7	1.10 8	7.04 4	1.16 8	av $E\beta$ =234.6 60; ε K=0.831 4; ε L=0.0982 5; ε M+=0.02144 11
(1595 14)	3645.05	0.31 3	4.48 15	6.450 18	4.79 16	av E β =252.4 60; ε K=0.818 5; ε L=0.0967 6; ε M+=0.02110 13
(1878 14)	3362.17	0.18 2	0.64 5	7.44 4	0.82 6	Measured E β =650, I β =2.4 (1962Ya01). av E β =374.7 61; ε K=0.683 9; ε L=0.0805 10; ε M+=0.01756 22
(1922 14)	3317.74	1.1 2	3.5 5	6.73 7	4.6 7	av E β =394.1 62; ϵ K=0.656 9; ϵ L=0.0773 11; ϵ M+=0.01686 23
(1949 [‡] 14)	3291.33	0.043 16	0.12 4	8.21 17	0.16 6	av $E\beta$ =405.6 62; ε K=0.640 9; ε L=0.0753 11; ε M+=0.01644 23 log <i>ft</i> =8.2 is too low to be realistic for 4 ⁻ to 6 ⁻ β transition. Its apparent weak β feeding of 0.14% or so may be due to unobserved weak γ rays feeding this level
(2055 14)	3185.34	1.9 4	3.7 8	6.76 10	5.6 12	av E β =452.2 62; ε K=0.572 9; ε L=0.0674 11; ε M+=0.01470 22
(2184 14)	3055.90	1.33 11	1.71 14	7.14 4	3.04 24	Measured $E\beta$ =1043 20, 1 β =4.6 (1965 Va02). av $E\beta$ =509.4 63; ε K=0.491 9; ε L=0.0578 10;
(2243 14)	2997.47	11.9 5	12.9 5	6.288 21	24.8 9	$\varepsilon M +=0.01200 22$ av E β =535.4 63; εK =0.457 9; εL =0.0537 10; εM +=0.01171 22
(2362 14)	2878.38	0.69 12	0.55 9	7.70 8	1.24 21	Measured $E\beta$ =1248 15, $I\beta$ =14 (1965Va02). av $E\beta$ =588.6 63; ε K=0.391 8; ε L=0.0459 9; ε M+=0.01001 19
(2452 [‡] 14)	2788.5	0.05 3	0.04 2	8.93 25	0.09 5	av E β =628.9 63; ε K=0.346 7; ε L=0.0407 8; ε M=-0.00887 17
(2567 14)	2672.98	5.6 5	2.8 2	7.06 4	8.4 7	av E β =681.1 64; ϵ K=0.296 6; ϵ L=0.0348 7; ϵ M+=0.00758 15
(2598 [‡] 14)	2642.27	0.05 3	0.02 2	9.2 4	0.07 5	av $E\beta$ =695.0 64; ε K=0.284 6; ε L=0.0333 7;
(2758 14)	2482.02	1.7 10	0.6 3	7.80 25	2.3 13	av $E\beta$ =767.8 64; ε K=0.229 5; ε L=0.0268 5; ε MI=0.0055 1/
(3010 14)	2229.89	3.6 9	0.83 21	7.74 11	4.4 11	av E β =883.3 65; ε K=0.165 3; ε L=0.0193 4; ε M+=0.00421 8

Continued on next page (footnotes at end of table)

⁸⁶Υ ε decay (14.74 h) 1970Ra06 (continued)

ϵ, β^+ radiations (continued)

E(decay)	E(level)	$I\beta^+$ [†]	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
						Measured E β =2019 20 (1965Va02), 1960 20 (1962Ya01); I β =4.6 (1965Va02).
(3386 14)	1854.26	0.9 9	0.4 4	9.8 ¹ <i>u</i> 5	1.3 13	av E β =1077.6 65; ε K=0.238 4; ε L=0.0281 5; ε M+=0.00613 10
						Measured E β =2335 40 (1965Va02), 2320 50 (1962Ya01); I β =1.3 (1965Va02).
(4163 14)	1076.76	2.0 11	0.29 16	$10.30^{1u} \ 25$	2.3 13	av Eβ=1436.8 66; εK=0.1098 15; εL=0.01293 17; εM+=0.00282 4
						Measured E β =3153 40 (1965Va02), 3130 30 (1962Ya01); I β =0.6 (1965Va02). Shape=2-yes (1965Va02,1962Ya01).

[†] Absolute intensity per 100 decays.
[‡] Existence of this branch is questionable.

⁸⁶Y ε decay (14.74 h) 1970Ra06 (continued)

 $\gamma(^{86}\mathrm{Sr})$

I γ normalization: Σ (I(γ +ce) of γ rays to g.s.)=100. Direct feeding to g.s. is highly forbidden.

4

Following weak transitions were reported by 1969Ar25 only: 118.7 5 (0.25 9), 241.7 5 (1.01 *16*), 815.5 *15* (1.5 5), 909.7 5 (2.0 5), 928 *1* (1.6 4), 1064 *1* (0.9 4), 1390 2 (0.3), 1460 *1* (0.3), 1603 2 (0.5), 1661 2 (0.5 2), 1782 *1* (0.1), 1940 3 (0.15 5), 2043 2 (0.1), 2058 2 (0.37 *13*), 2130 2 (0.15 7), 2164 2 (0.10 5), 2190 3 (0.10 3), 2228 3 (≤ 0.1), 2298 2 (0.1), 2314 3 (0.4 3), 2617 2 (0.20 8), 2859 3 (0.3 *1*), 3025 5 (0.00 3), 3868 5 (0.15), 3888 5 (0.37), 3918 5

(0.56). These have not been placed in a level scheme and are omitted here, since not confirmed by 1970Ra06.

 $\alpha(K)\exp$ deduced from conversion spectra if mult(1077 γ)=E2. $\alpha(K)\exp(1077\gamma)$ from internal/external conversion spectra.

Eγ	I_{γ}^{d}	E_i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult. [#]	$\delta^{\dagger \#}$	α^{e}	Comments
132.34 10	0.20 1	3317.74	(5)-	3185.34 ((3)-				
144.5 3	0.038 4	3645.05	(3 ⁻)	3500.07 ((3,4,5) ⁻				
182.34 ^{bf} 20	0.13 4	3500.07	$(3,4,5)^{-}$	3317.74 ((5)-				
187.87 <i>13</i>	1.53 5	3185.34	(3)-	2997.47 3	3-	(M1)		0.0297	α (K)exp=0.021 4 α (K)=0.0262 4; α (L)=0.00294 5; α (M)=0.000495 7; α (N+)=6.60×10 ⁻⁵ 10 α (N)=6 20×10 ⁻⁵ 9: α (Q)=3 99×10 ⁻⁶ 6
									Mult.: $\alpha(K)$ exp gives E1,M1; but ΔJ^{π} requires M1.
190.80 <i>13</i>	1.23 4	2672.98	5-	2482.02	3-	E2		0.0957	$\begin{array}{l} \alpha(\text{K}) \exp = 0.098 \ 7 \\ \alpha(\text{K}) = 0.0830 \ 12; \ \alpha(\text{L}) = 0.01071 \ 16; \ \alpha(\text{M}) = 0.00180 \ 3; \\ \alpha(\text{N}+) = 0.000228 \ 4 \end{array}$
									$\alpha(N)=0.000216 \ 3; \ \alpha(O)=1.134\times10^{-5} \ 17$ Additional information 7.
209.80 ^{bf} 23	0.48 2	3765.81	3-,4-,5-	3555.87 ((4 ⁺)				
235.37 23	0.48 2	3291.33	6-	3055.90 5	5-				
237.9 3	0.16 3	3555.87	(4+)	3317.74 ((5)-				
252.05 13	0.45 2	2482.02	3-	2229.89 4	4+	E1		0.00690 10	$\begin{aligned} &\alpha(\text{K})\exp=0.0040 \ 8 \\ &\alpha=0.00690 \ 10; \ \alpha(\text{K})=0.00611 \ 9; \ \alpha(\text{L})=0.000665 \ 10; \\ &\alpha(\text{M})=0.0001113 \ 16; \ \alpha(\text{N}+)=1.473\times10^{-5} \\ &\alpha(\text{N})=1.386\times10^{-5} \ 20; \ \alpha(\text{O})=8.73\times10^{-7} \ 13 \\ &\text{Additional information 5.} \end{aligned}$
256.4 ^{bf} 4	0.09 3	3942.64	3-	3686.77 3	3-				
264.53 13	0.65 3	3555.87	(4^{+})	3291.33 6	5-				
307.00 10	4.2 1	3185.34	(3)-	2878.38 ((4)+	E1		0.00399 6	$\alpha(K)\exp=0.0040 \ 4$ $\alpha=0.00399 \ 6; \ \alpha(K)=0.00354 \ 5; \ \alpha(L)=0.000384 \ 6;$ $\alpha(M)=6.43\times10^{-5} \ 9; \ \alpha(N+)=8.53\times10^{-6} \ 12$ $\alpha(N)=8.02\times10^{-6} \ 12; \ \alpha(O)=5.10\times10^{-7} \ 8$
331.08 23	1.01 3	3831.17	(3,4) ⁻	3500.07 ((3,4,5) ⁻	M1(+E2)	<0.7	0.0082 12	$\begin{array}{l} \alpha(\text{K}) \exp = 0.0068 \ 13 \\ \alpha = 0.0082 \ 12; \ \alpha(\text{K}) = 0.0072 \ 10; \ \alpha(\text{L}) = 0.00081 \ 13; \end{array}$

From ENSDF

						⁸⁶ Y ε decay (14.74 h) 1970Ra06 (continued)		(continued)		
							$\gamma(^{86}\mathrm{Sr})$	(continued)		
	Eγ	I_{γ}^{d}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\dagger \#}$	α^{e}	Comments
	355.07 26 370.28 17 380.4 3 382.86 23 425.97 23	0.12 <i>3</i> 1.00 <i>5</i> 0.55 <i>4</i> 4.40 <i>14</i> 0.37 <i>2</i>	2997.47 3926.10 4146.28 3055.90 3926.10	3^{-} (4) ⁺ 3,4 ⁺ 5 ⁻ (4) ⁺	2642.27 3555.87 3765.81 2672.98 3500.07	$\begin{array}{c} 2^{+} \\ (4^{+}) \\ 3^{-}, 4^{-}, 5^{-} \\ 5^{-} \\ (3, 4, 5)^{-} \end{array}$				α (M)=0.000136 21; α (N+)=1.8×10 ⁻⁵ 3 α (N)=1.70×10 ⁻⁵ 25; α (O)=1.07×10 ⁻⁶ 13 Additional information 23.
	439.5 <i>3</i> 443.13 <i>10</i>	0.24 8 20.5 6	3317.74 2672.98	(5) ⁻ 5 ⁻	2878.38 2229.89	$(4)^+$	E1+M2	+0.083 11	0.00159 <i>3</i>	$\begin{aligned} &\alpha(\text{K})\exp=0.00129\ 8\\ &\alpha=0.00159\ 3;\ \alpha(\text{K})=0.00141\ 3;\ \alpha(\text{L})=0.000153\ 3;\\ &\alpha(\text{M})=2.57\times10^{-5}\ 5;\ \alpha(\text{N}+)=3.42\times10^{-6}\ 7\\ &\alpha(\text{N})=3.21\times10^{-6}\ 7;\ \alpha(\text{O})=2.06\times10^{-7}\ 4\\ &\text{Additional information}\ 8.\\ &(443\gamma)(1153\gamma)(\theta):\ \text{A}_2=-0.017\ 9,\ \text{A}_4=+0.008\ 16\\ &(1984\text{Ak}02).\\ &(443\gamma)(1153\gamma)(1077\gamma)(\theta):\ \text{A}_2=-0.016\ 13,\ \text{A}_4=+0.001\\ &22\ (1984\text{Ak}02). \end{aligned}$
ı	444.18 23	0.78 ^c 20	3500.07	(3,4,5) ⁻	3055.90	5-				22 (1904/1K02).
	$448.10^{\ddagger bf}$ 10	0.09 3	3765.81	3 ⁻ ,4 ⁻ ,5 ⁻	3317.74	$(5)^{-}$				
	469.24 25 503.0 ^f 4	0.30 5	3291.33	5 ,4 ,5 6 ⁻	2788.5	(3,4,3) 2 ⁺	[M4]			E _γ : evaluators treat the placement of this γ as highly questionable since it is not confirmed in (α ,2n γ) (1983Fi05), (⁹ Be,5n γ) (2014Li25) and (¹³ C,3n γ) (2014KuZZ) experiments; and due to implied and unlikely M4 multipolarity.
	512.42 ^{<i>a</i>} 515.18 20	& 5.93 <i>17</i>	3185.34 2997.47	(3) ⁻ 3 ⁻	2672.98 2482.02	5- 3-	M1,E2		0.0029 5	$\alpha(K)\exp=0.0026\ 5$ $\alpha=0.0029\ 5;\ \alpha(K)=0.0026\ 4;\ \alpha(L)=0.00029\ 5;$ $\alpha(M)=4.8\times10^{-5}\ 9;\ \alpha(N+)=6.4\times10^{-6}\ 11$ $\alpha(N)=6.0\times10^{-6}\ 10;\ \alpha(O)=3.8\times10^{-7}\ 6$
	580.57 10	5.80 17	3765.81	3-,4-,5-	3185.34	. (3)-	(M1)		0.00186 <i>3</i>	$\begin{aligned} &\alpha(K) \exp[=0.00134 \ I9] \\ &\alpha=0.00186 \ 3; \ \alpha(K)=0.001644 \ 23; \ \alpha(L)=0.000179 \ 3; \\ &\alpha(M)=3.01\times10^{-5} \ 5; \ \alpha(N+)=4.03\times10^{-6} \ 6 \\ &\alpha(N)=3.78\times10^{-6} \ 6; \ \alpha(O)=2.47\times10^{-7} \ 4 \\ &\text{Additional information 21} \end{aligned}$
	608.29 10	2.44 18	3926.10	(4)+	3317.74	(5)-	E1+M2	0.21 7	0.00089 13	$\alpha(K)\exp=0.00079 \ 9$ $\alpha=0.00089 \ 13; \ \alpha(K)=0.00078 \ 12; \ \alpha(L)=8.5\times10^{-5} \ 13;$ $\alpha(M)=1.43\times10^{-5} \ 22; \ \alpha(N+)=1.9\times10^{-6} \ 3$ $\alpha(N)=1.8\times10^{-6} \ 3; \ \alpha(O)=1.16\times10^{-7} \ 18$ Additional information 26.

S

 ${}^{86}_{38}{
m Sr}_{48}$ -5

L

				⁸⁶ Υ ε de	ecay (14.74 h) 1970Ra 0	6 (continued)	
					γ ⁽⁸⁶ S1) (continued)		
Eγ	I_{γ}^{d}	E _i (level)	\mathbf{J}_i^{π}	$E_f = J_f^{\pi}$	Mult. [#]	$\delta^{\dagger \#}$	$\alpha^{\boldsymbol{e}}$	Comments
618.2 <i>4</i> 627.72 <i>10</i>	0.26 <i>4</i> 39.5 <i>12</i>	3291.33 2482.02	6- 3-	2672.98 5 ⁻ 1854.26 2 ⁺	E1+M2	-0.065 24	0.000675 17	$\begin{aligned} &\alpha(\text{K})\exp=0.00061 \ 4 \\ &\alpha=0.000675 \ 17; \ \alpha(\text{K})=0.000599 \ 15; \ \alpha(\text{L})=6.45\times10^{-5} \\ &17; \ \alpha(\text{M})=1.08\times10^{-5} \ 3; \ \alpha(\text{N}+)=1.44\times10^{-6} \ 4 \\ &\alpha(\text{N})=1.36\times10^{-6} \ 4; \ \alpha(\text{O})=8.80\times10^{-8} \ 23 \\ &\text{Additional information } 6. \\ &(628\gamma)(1854\gamma)(\theta): \ \text{A}_2=-0.123 \ 10, \ \text{A}_4=+0.02 \ 1 \\ &(1984\text{Ak}02). \\ &(628\gamma)(777\gamma)(1077\gamma)(\theta): \ \text{A}_2=-0.049 \ 21, \ \text{A}_4=+0.005 \\ &20 \ (1984\text{Ak}02). \end{aligned}$
634.78 ^{‡bf} 10 644.82 ^a	0.11 <i>3</i> 2.65 ^c 40	3926.10 3317.74	(4) ⁺ (5) ⁻	3291.33 6 ⁻ 2672.98 5 ⁻	(M1+E2)	+0.27 6	0.001483 23	α =0.001483 23; α (K)=0.001313 20; α (L)=0.0001428 23; α (M)=2.40×10 ⁻⁵ 4; α (N+)=3.21×10 ⁻⁶ α (N)=3.02×10 ⁻⁶ 5; α (O)=1.97×10 ⁻⁷ 3 Additional information 17. (645 γ)(443)(1153 γ)(θ): A ₂ =+0.103 20, A ₄ =+0.005 33 (1984Ak02). δ : +0.27 6 or -1.2 3.
645.87 ^{<i>a</i>}	11.1 ^c 13	3831.17	(3,4) ⁻	3185.34 (3)-	(M1)		0.001457 21	$\begin{array}{l} \alpha(\mathrm{K}) \exp = 0.00117 \ 8 \\ \alpha = 0.001457 \ 21; \ \alpha(\mathrm{K}) = 0.001291 \ 18; \ \alpha(\mathrm{L}) = 0.0001401 \\ 20; \ \alpha(\mathrm{M}) = 2.35 \times 10^{-5} \ 4; \ \alpha(\mathrm{N}+) = 3.15 \times 10^{-6} \\ \alpha(\mathrm{N}) = 2.96 \times 10^{-6} \ 5; \ \alpha(\mathrm{O}) = 1.94 \times 10^{-7} \ 3 \\ \alpha(\mathrm{K}) \exp: \ \mathrm{for} \ 644.82\gamma + 645.87\gamma. \\ \mathrm{Additional \ information} \ 24. \end{array}$
648.6 <i>10</i> 689.29 <i>25</i> *702 2 6	& 0.21 4	2878.38 3362.17	$(4)^+$ 4 ⁺	2229.89 4 ⁺ 2672.98 5 ⁻				
703.33 10	18.7 5	3185.34	(3)-	2482.02 3-	M1+E2	+0.25 5	0.001215 18	α (K)exp=0.00099 5 α =0.001215 18; α (K)=0.001076 16; α (L)=0.0001167 17; α (M)=1.96×10 ⁻⁵ 3; α (N+)=2.63×10 ⁻⁶ α (N)=2.46×10 ⁻⁶ 4; α (O)=1.614×10 ⁻⁷ 24 Additional information 16. δ : or -2.4 3. (703 γ)(628 γ)(θ): A ₂ =-0.088 4, A ₄ =-0.024 9 (1984Ak02)
709.90 <i>10</i>	3.18 9	3765.81	3-,4-,5-	3055.90 5-	M1,E2		0.00127 9	$\begin{array}{l} \alpha(\text{K}) \exp = 0.00102 \ 27 \\ \alpha = 0.00127 \ 9; \ \alpha(\text{K}) = 0.00112 \ 8; \ \alpha(\text{L}) = 0.000123 \ 10; \\ \alpha(\text{M}) = 2.06 \times 10^{-5} \ 17; \ \alpha(\text{N}+) = 2.75 \times 10^{-6} \ 21 \\ \alpha(\text{N}) = 2.59 \times 10^{-6} \ 20; \ \alpha(\text{O}) = 1.67 \times 10^{-7} \ 10 \\ \text{Additional information 22} \end{array}$
719.17 <i>23</i> 740.81 <i>13</i>	0.27 <i>4</i> 1.65 <i>6</i>	3775.04? 3926.10	$(4,5)^+$ $(4)^+$	3055.90 5 ⁻ 3185.34 (3) ⁻				

6

 ${}^{86}_{38}{
m Sr}_{48}{
m -6}$

L

	⁸⁶ Υ ε decay (14.74 h) 1970Ra06 (continued)													
					$\gamma(^{\epsilon}$	³⁶ Sr) (continue	ed)							
E_{γ}	I_{γ}^{d}	E _i (level)	\mathbf{J}_i^π	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.#	$\delta^{\dagger \#}$	α ^e	Comments						
767.63 <i>13</i> 768.25 ^{<i>a</i>} 777.37 <i>10</i>	2.9 ^c 4 0.39 ^c 13 27.2 7	2997.47 3765.81 1854.26	3 ⁻ 3 ⁻ ,4 ⁻ ,5 ⁻ 2 ⁺	2229.89 4 ⁺ 2997.47 3 ⁻ 1076.76 2 ⁺	M1+E2	+0.251 17	0.000971 14	$\alpha(K)\exp=0.00093 \ 8$ $\alpha=0.000971 \ 14; \ \alpha(K)=0.000860 \ 12; \ \alpha(L)=9.31\times10^{-5} \ 13;$ $\alpha(M)=1.563\times10^{-5} \ 22; \ \alpha(N+)=2.10\times10^{-6}$ $\alpha(N)=1.97\times10^{-6} \ 3; \ \alpha(O)=1.290\times10^{-7} \ 18$						
792.56.26	0.22.4	20(0.01	2- 4- 5-	2195 24 (2)-				Additional information 2. (777 γ)(1077 γ)(θ): A ₂ =+0.065 <i>15</i> , A ₄ =+0.02 <i>3</i> (1984Ak02).						
826.02 <i>13</i>	0.32 4 4.0 <i>1</i>	3055.90	5,4,5 5-	2229.89 4+	E1(+M2)	+0.012 19	0.000364 6	$\alpha(K)\exp=0.00032 \ 11$ $\alpha=0.000364 \ 6; \ \alpha(K)=0.000323 \ 5; \ \alpha(L)=3.46\times10^{-5} \ 5;$ $\alpha(M)=5.81\times10^{-6} \ 9; \ \alpha(N+)=7.77\times10^{-7} \ 12$ $\alpha(N)=7.29\times10^{-7} \ 11; \ \alpha(O)=4.76\times10^{-8} \ 7$ Additional information 13. (826 γ)(1153 γ)(θ): A ₂ =-0.060 \ 16, A ₄ =+0.11 \ 27 (1984Ak02). (826 γ)(1153 γ)(1077 γ)(θ): A ₂ =-0.066 \ 21, A ₄ =+0.01 \ 4 (1984Ak02).						
833.72 ^a 835.67 ^a	1.8 ^c 4 5.3 ^c 7	3831.17 3317.74	(3,4) ⁻ (5) ⁻	2997.47 3 ⁻ 2482.02 3 ⁻	(E2)		0.00086 4	$\alpha(K) \exp=0.00064 \ 5$ $\alpha=0.00086 \ 4; \ \alpha(K)=0.00076 \ 4; \ \alpha(L)=8.3\times10^{-5} \ 4;$ $\alpha(M)=1.39\times10^{-5} \ 7; \ \alpha(N+)=1.85\times10^{-6} \ 9$ $\alpha(N)=1.74\times10^{-6} \ 8; \ \alpha(O)=1.13\times10^{-7} \ 4$ $\alpha(K) \exp: \ for \ 833.72\gamma+835.67\gamma.$ Additional information 18						
882.96 <i>17</i> 887.40 <i>17</i> 955.35 <i>20</i> 971.43 <i>18</i>	0.3 <i>1</i> 0.53 <i>5</i> 1.26 <i>5</i> 0.33 <i>4</i> 0.22 <i>14</i>	3555.87 3765.81 3185.34 3969.01 3500.07	(4^+) $3^-, 4^-, 5^-$ $(3)^-$ $3^-, 4^-, 5^-$ $(3, 4, 5)^-$	2672.98 5 ⁻ 2878.38 (4) ⁺ 2229.89 4 ⁺ 2997.47 3 ⁻ 2482.02 3 ⁻										
1017.35 25 1024.04 10	4.6 2	2878.38	(4) ⁺	1854.26 2+	(E2)		0.000540 11	$\begin{aligned} &\alpha(\text{K}) \text{exp} = 0.00041 \ 4 \\ &\alpha = 0.000540 \ 11; \ \alpha(\text{K}) = 0.000479 \ 10; \ \alpha(\text{L}) = 5.18 \times 10^{-5} \ 13; \\ &\alpha(\text{M}) = 8.69 \times 10^{-6} \ 21; \ \alpha(\text{N}+) = 1.164 \times 10^{-6} \\ &\alpha(\text{N}) = 1.092 \times 10^{-6} \ 24; \ \alpha(\text{O}) = 7.13 \times 10^{-8} \ 12 \end{aligned}$						
1076.63 10	100	1076.76	2+	0.0 0+	E2		0.000489 7	Additional information 9. $\alpha(K)\exp=0.00041 \ 4$ $\alpha=0.000489 \ 7; \ \alpha(K)=0.000433 \ 6; \ \alpha(L)=4.70\times10^{-5} \ 7;$ $\alpha(M)=7.89\times10^{-6} \ 11; \ \alpha(N+)=1.054\times10^{-6} \ 15$ $\alpha(N)=9.90\times10^{-7} \ 14; \ \alpha(O)=6.41\times10^{-8} \ 9$						
1087.6 5	0.05 1	3317.74	(5) ⁻	2229.89 4+				Additional information 1.						

 \neg

From ENSDF

 ${}^{86}_{38}{
m Sr}_{48}$ -7

				86 Y ε	decay (14.74 h)	1970Ra06 (continued)		<u>d)</u>
					$\gamma(^{86}\mathrm{Sr})$ ((continue	d)	
E_{γ}	I_{γ}^{d}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	J_f^{π} Mult. [#] $\delta^{\dagger #} \alpha^e$			Comments
1092.68 <i>13</i> 1102.02 <i>23</i> 1133.3 <i>10</i> 1142.3 ^{bf} <i>10</i>	0.84 5 0.24 3 0.36 3 0.12 4	3765.81 3775.04? 3362.17 2997.47	3 ⁻ ,4 ⁻ ,5 ⁻ (4,5) ⁺ 4 ⁺ 3 ⁻	2672.98 5 ⁻ 2672.98 5 ⁻ 2229.89 4 ⁺ 1854.26 2 ⁺				
1150.34 ^{<i>a</i>} 1153.05 <i>10</i>	α 37.0 <i>11</i>	4206.18 2229.89	(3 ⁻ ,4,5 ⁻) 4 ⁺	3055.90 5 ⁻ 1076.76 2 ⁺	E2		0.000423 6	$\begin{aligned} &\alpha(\text{K})\exp=0.000373\ 26\\ &\alpha=0.000423\ 6;\ \alpha(\text{K})=0.000372\ 6;\ \alpha(\text{L})=4.03\times10^{-5}\ 6;\\ &\alpha(\text{M})=6.76\times10^{-6}\ 10;\ \alpha(\text{N}+)=3.95\times10^{-6}\ 6\\ &\alpha(\text{N})=8.48\times10^{-7}\ 12;\ \alpha(\text{O})=5.51\times10^{-8}\ 8;\\ &\alpha(\text{IPF})=3.05\times10^{-6}\ 5\\ &\delta(\text{M3/E2})=-0.008\ 13\ \text{from}\ \gamma\gamma(\theta).\\ &\text{Additional information}\ 4.\\ &(1153\gamma)(1077\gamma)(\theta):\ \text{A}_2=+0.089\ 15,\ \text{A}_4=+0.01\ 3\\ &(1984\text{Ak02}). \end{aligned}$
1154.0 <i>15</i> 1163.03 <i>10</i>	& 1.43 5	4339.4? 3645.05	(3 ⁻)	3185.34 (3) ⁻ 2482.02 3 ⁻	M1+E2(+E0)		0.000414 7	$\begin{aligned} &\alpha(\text{K}) \text{exp} = 0.0014 \ 8 \\ &\alpha = 0.000414 \ 7; \ \alpha(\text{K}) = 0.000364 \ 6; \ \alpha(\text{L}) = 3.92 \times 10^{-5} \ 7; \\ &\alpha(\text{M}) = 6.58 \times 10^{-6} \ 11; \ \alpha(\text{N}+) = 4.3 \times 10^{-6} \ 5 \\ &\alpha(\text{N}) = 8.27 \times 10^{-7} \ 13; \ \alpha(\text{O}) = 5.42 \times 10^{-8} \ 8; \ \alpha(\text{IPF}) = 3.4 \times 10^{-6} \\ &5 \end{aligned}$ Additional information 19.
1253.11 10	1.86 6	3926.10	(4)+	2672.98 5-	E1(+M2)	0.2 2	0.00026 6	Mult.: α (K)exp suggests possible E0 admixture. α (K)exp=0.00018 5 α =0.00026 6; α (K)=0.00017 6; α (L)=1.8×10 ⁻⁵ 6; α (M)=3.0×10 ⁻⁶ 10; α (N+)=7.6×10 ⁻⁵ 8 α (N)=3.7×10 ⁻⁷ 13; α (O)=2.5×10 ⁻⁸ 8; α (IPF)=7.5×10 ⁻⁵ 8 Additional information 27
1270.16 <i>13</i> 1283.96 <i>13</i> ^x 1294.9 <i>3</i>	0.79 <i>12</i> 0.35 <i>13</i> 0.35 <i>10</i>	3500.07 3765.81	(3,4,5) ⁻ 3 ⁻ ,4 ⁻ ,5 ⁻	2229.89 4 ⁺ 2482.02 3 ⁻				
1296.03 23	0.66 4	3969.01 4206.18	$3^{-}, 4^{-}, 5^{-}$	$2672.98 5^{-}$				
1349.15 <i>10</i>	3.57 11	3831.17	(3,4) ⁻	2482.02 3 ⁻	M1,E2		0.000336 6	α (K)exp=0.00024 4 α =0.000336 6; α (K)=0.000267 4; α (L)=2.87×10 ⁻⁵ 4; α (M)=4.81×10 ⁻⁶ 7; α (N+)=3.6×10 ⁻⁵ 4 α (N)=6.05×10 ⁻⁷ 9; α (O)=3.98×10 ⁻⁸ 7; α (IPF)=3.5×10 ⁻⁵ 4 Additional information 25.
1404.8 <i>4</i> 1415.20 <i>23</i> 1507.86 <i>10</i> 1533.19 <i>13</i> 1535.67 <i>13</i>	$\begin{array}{c} 0.22 \ 6 \\ 0.40 \ 11 \\ 0.43 \ 5 \\ 0.27 \ 4 \\ 0.14 \ 4 \end{array}$	2482.02 3645.05 3362.17 4206.18 3765.81	3 ⁻ (3 ⁻) 4 ⁺ (3 ⁻ ,4,5 ⁻) 3 ⁻ ,4 ⁻ ,5 ⁻	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$				

 ∞

L

⁸⁶Y ε decay (14.74 h) 1970Ra06 (continued)

$\gamma(^{86}Sr)$ (continued)

Eγ	I_{γ}^{d}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{\dagger \#}$	α ^e	Comments
1564.4 ^{bf} 5 1696.25 <i>13</i> 1711.6 7 1724.15 <i>10</i>	0.22 6 0.77 2 0.21 4 0.67 5	2642.27 3926.10 2788.5 4206.18	2+ (4)+ 2+ (3 ⁻ ,4,5 ⁻)	1076.76 2 ⁺ 2229.89 4 ⁺ 1076.76 2 ⁺ 2482.02 3 ⁻				
1790.90 <i>10</i>	1.21 5	3645.05	(3 ⁻)	1854.26 2+	E1+M2	-0.16 7	0.000558 9	$ \begin{array}{l} \alpha = 0.000558 \ 9; \ \alpha(\mathrm{K}) = 8.6 \times 10^{-5} \ 6; \ \alpha(\mathrm{L}) = 9.1 \times 10^{-6} \ 6; \\ \alpha(\mathrm{M}) = 1.53 \times 10^{-6} \ 11; \ \alpha(\mathrm{N} +) = 0.000462 \ 12 \\ \alpha(\mathrm{N}) = 1.93 \times 10^{-7} \ 13; \ \alpha(\mathrm{O}) = 1.27 \times 10^{-8} \ 9; \ \alpha(\mathrm{IPF}) = 0.000462 \\ 12 \end{array} $
1801.70 <i>10</i>	2.00 6	2878.38	(4)+	1076.76 2+	(E2)		0.000368 16	$\begin{array}{l} (1791\gamma)(1854\gamma)(\theta):\ A_2=-0.20\ 5,\ A_4=+0.06\ 9\ (1984Ak02).\\ \alpha(K)\exp=0.00013\ 4\\ \alpha=0.000368\ 16;\ \alpha(K)=0.0001511\ 24;\ \alpha(L)=1.614\times10^{-5}\\ 24;\ \alpha(M)=2.71\times10^{-6}\ 4;\ \alpha(N+)=0.000198\\ \alpha(N)=3.41\times10^{-7}\ 6;\ \alpha(O)=2.25\times10^{-8}\ 4;\ \alpha(IPF)=0.000198\\ 17 \end{array}$
1854.38 <i>13</i>	20.8 6	1854.26	2+	0.0 0+	(E2) [@]		0.000399 6	Additional information 10. α (K)exp=0.000147 23 α =0.000399 6; α (K)=0.0001423 20; α (L)=1.521×10 ⁻⁵ 22; α (M)=2.55×10 ⁻⁶ 4; α (N+)=0.000239 α (N)=3.21×10 ⁻⁷ 5; α (O)=2.11×10 ⁻⁸ 3; α (IPF)=0.000238 4 Additional information 2
1920.72 <i>13</i>	25.2 8	2997.47	3-	1076.76 2+	E1(+M2)	-0.011 26	0.000648 9	Additional information 3. $\alpha(K)\exp=0.000072 \ 14$ $\alpha=0.000648 \ 9; \ \alpha(K)=7.24\times10^{-5} \ 11; \ \alpha(L)=7.66\times10^{-6} \ 11; \ \alpha(M)=1.284\times10^{-6} \ 19; \ \alpha(N+)=0.000567 \ 8$ $\alpha(N)=1.617\times10^{-7} \ 24; \ \alpha(O)=1.068\times10^{-8} \ 16; \ \alpha(IPF)=0.000567 \ 8$ Additional information 12. $(1921\gamma)(1077\gamma)(\theta): \ A_2=-0.120 \ 23, \ A_4=+0.03 \ 5$ (1984Ak02).
x 1969.1 7 2017.1 6 2088.09 25 2108.9 3 2180.8 10 2291.8 5 2482.08 17 2555.3 17	0.06 <i>I</i> 0.16 <i>2</i> 0.30 <i>3</i> 0.06 <i>I</i> 0.04 <i>I</i> 0.15 <i>I</i> 0.14 <i>I</i> 0.033 <i>I0</i>	3871.6 3942.64 3185.34 4410.7 4146.28 2482.02 4410.7	3 ⁻ 3 ⁻ (3) ⁻ 3 ⁻ 3,4 ⁺ 3 ⁻ 3 ⁻	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	[E3]			
2567.97 18	2.73 13	3645.05	(3 ⁻)	1076.76 2+	E1+M2	+0.187 14	0.001028 15	$\begin{aligned} &\alpha = 0.001028 \ 15; \ \alpha(\mathrm{K}) = 5.02 \times 10^{-5} \ 9; \ \alpha(\mathrm{L}) = 5.31 \times 10^{-6} \ 9; \\ &\alpha(\mathrm{M}) = 8.90 \times 10^{-7} \ 15; \ \alpha(\mathrm{N}+) = 0.000972 \ 14 \\ &\alpha(\mathrm{N}) = 1.121 \times 10^{-7} \ 19; \ \alpha(\mathrm{O}) = 7.42 \times 10^{-9} \ 13; \\ &\alpha(\mathrm{IPF}) = 0.000972 \ 14 \\ &(2568\gamma)(1077\gamma)(\theta): \ \mathrm{A_2} = +0.08 \ 4, \ \mathrm{A_4} = -0.03 \ 7 \ (1984\mathrm{Ak02}). \\ &\mathrm{Additional information} \ 20. \end{aligned}$

9

$\gamma(^{86}Sr)$ (continued)

Eγ	I_{γ}^{d}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]
2610.11 20	1.50 9	3686.77	3-	1076.76	2+	
2641.9 4	0.20 5	2642.27	2+	0.0	0^+	
2790.0 10	0.013 7	2788.5	2^{+}	0.0	0^+	
2794.9 4	0.25 2	3871.6	3-	1076.76	2^{+}	
^x 2827.7 8	0.07 2					
2862 <i>3</i>	0.011 5	4718.1	$3,4^{(+)}$	1854.26	2^{+}	
2865.9 <i>3</i>	0.46 8	3942.64	3-	1076.76	2^{+}	
2997.6 5	0.010 5	2997.47	3-	0.0	0^+	[E3]
3069.7 4	0.14 2	4146.28	3,4+	1076.76	2^{+}	
3334.0 5	0.15 2	4410.7	3-	1076.76	2^{+}	
3642 2	0.05 1	4718.1	$3,4^{(+)}$	1076.76	2^{+}	
3877 6	0.06 5	4954	3,4 ⁽⁺⁾	1076.76	2^{+}	

[†] Spin sequences and δ values deduced from evaluator's (in 1988Mu14) analysis. Large- δ solutions have not been considered for E1+M2 and E2+M3 transitions.

 \pm Uncertainty increased by evaluator from 20 eV to 0.1 keV.

[#] From ce data of 1970Ra06 and $\gamma\gamma(\theta)$ data of 1984Ak02 and 1970Ar03, except as noted otherwise.

[@] $\alpha(K)$ exp allows M1 or E2, adopted ΔJ^{π} excludes M1.

& Very weak.

10

^{*a*} From level-energy difference.

^b Assignment to 86 Y ε decay is uncertain.

^{*c*} From $\gamma\gamma$ coin.

^d For absolute intensity per 100 decays, multiply by 0.825 4.

^e Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^f Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

 $^{86}_{38}{
m Sr}_{48}$

۰

o

 $^{86}_{38}{
m Sr}_{48}$

