82 Se(9 Be,5n γ) 2014Li25

	Histor	у	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Alexandru Negret, Balraj Singh	NDS 124, 1 (2015)	30-Nov-2014

2014Li25: $E({}^{9}Be)=40-53$ MeV. Target=0.85 mg/cm² thick enriched ${}^{82}Se$ foil with 4.5 mg/cm² thick gold backing. Measured E γ , I γ , excitation functions at E=40, 44, 46, 48, 52 and 53 MeV, $\gamma\gamma$ -coin, $\gamma\gamma(\theta)$ (DCO) using an array of nine BGO-Compton suppressed HPGe detectors, one Clover Ge detector, and two planar HPGe detectors at CIAE's HI-13 tandem accelerator facility. Deduced levels, J, π , multipolarity, particle configurations. Comparison with detailed shell-model calculations, assuming ${}^{56}Ni$ as an inert core and $1f_{5/2}$, $2p_{3/2}$, $2p_{1/2}$ and $1g_{9/2}$ orbitals for proton and neutron excitations.

⁸⁶ Sr Levels
SI LUVUS

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0#	0^{+}		
$1076.6^{\#}$ 2	2+		
1854.9 4	$\frac{2}{2^{+}}$		
2229.7 [#] 3	4+		
2482.6 ^C 4	3-		
2672.8 [°] 4	5-		
2857.4 [#] 4	6+		
2956.1 [#] 4	8+	0.455 µs 7	%IT=100
			$T_{1/2}$: from Adopted Levels.
3055.8° 5	(6 ⁻)		J^{π} : 5 ⁻ in Adopted Levels.
$3291.7^{\circ} 5$	(7)		J ⁴ : 6 in Adopted Levels.
$37825^{a}4$	(7) (6^+)		
4154.4 ^{<i>a</i>} 4	(8^+)		
4709.2 [#] 5	(10^{+})		
4924.0 7	(10)		
4976.3 ^{<i>a</i>} 5	(10^{+})		
5013.0 ^{&} 7	(11^{-})		
5543.9 <mark>b</mark> 6	(9 ⁻)		
5834.7 [@] 5	(11^{-})		
5847.9 ^b 8			
5983.6 8			
6040.6 ^{&} 9	(12 ⁻)		
6041.7 <mark>b</mark> 9			
6061.4 [@] 5	(12^{-})		
6191.2 [@] 6	(13^{-})		
6205.1 ^{<i>a</i>} 6	(12^{+})		
6689.1 ^{&} 10	(13-)		
6762.2 [@] 8	(14 ⁻)		
7461.8 [@] 9			
7640.5 ^a 7	(14^{+})		
8158.8? [@] 11			

 † From least-squares fit to Ey data.

[‡] As proposed by 2014Li25 based on $\gamma\gamma(\theta)$ (DCO) data, sequences of $\gamma\gamma$ cascades, and systematics of neighboring nuclides. See also Adopted Levels.

[#] Band(A): Yrast sequence.

⁸²Se(⁹Be,5nγ) 2014Li25 (continued)

⁸⁶Sr Levels (continued)

[@] Band(B): γ cascade based on (11⁻), 5834.7.

& Band(C): γ cascade based on (11⁻), 5013.0.

^{*a*} Band(D): γ cascade based on (6⁺).

^{*b*} Band(E): γ cascade based on (9⁻).

^{*c*} Band(F): γ cascade based on 3⁻.

$\gamma(^{86}\mathrm{Sr})$

DCO(1) and DCO(2) are for gates on stretched dipole and stretched quadrupole transitions, respectively. Expected DCO ratios are: 1.6 for stretched quadrupole and 1.0 for stretched dipole when gated on stretched dipole; 1.0 for stretched quadrupole and 0.7 for stretched dipole when gated on stretched quadrupole.

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. ^{&}	α ^{<i>a</i>}	Comments
98.7 2	46.4 11	2956.1	8+	2857.4 6+	E2	1.068	DCO(2)=1.05 7
129.8 2	15.3 4	6191.2	(13^{-})	6061.4 (12-)	D+Q		DCO(2)=0.54 4
184.6 5	1.6 <i>I</i>	2857.4	6+	2672.8 5-	D		DCO(1)=1.21 11
190.2 5	2.9 1	2672.8	5-	2482.6 3-			
193.8 5	2.5 3	6041.7		5847.9			
226.7 2	18.3 4	6061.4	(12^{-})	5834.7 (11 ⁻)	D+Q		DCO(1)=1.09 3; DCO(2)=0.59 4
235.9 5	2.8 <i>I</i>	3291.7	(7^{-})	3055.8 (6 ⁻)	D+Q		DCO(2)=0.51 6
303.8 5	1.6 <i>I</i>	5013.0	(11^{-})	4709.2 (10 ⁺)	D		DCO(2)=0.53 5
304.0 5	3.2 4	5847.9		5543.9 (9 ⁻)			
371.9 3	5.2 3	4154.4	(8^{+})	3782.5 (6 ⁺)	Q		DCO(2)=0.91 6
372.7 5	2.6 1	3664.4	(7^{-})	3291.7 (7 ⁻)	D+Q		DCO(1)=1.23 6
383.0 5	1.9 <i>1</i>	3055.8	(6 ⁻)	2672.8 5-	D+Q		DCO(1)=0.74 8
443.1 3	13.1 3	2672.8	5-	2229.7 4+	D		DCO(1)=0.77 6; DCO(2)=0.57 8
490.0 2	26.9 5	4154.4	(8 ⁺)	3664.4 (7 ⁻)	D		DCO(1)=0.885; DCO(2)=0.674
567.6 5	≈0.8	5543.9	(9)	4976.3 (10)			
571.0 ^{¹⁰} 5	4.3 2	6762.2	(14^{-})	6191.2 (13 ⁻)	D+Q		DCO(1)=0.81 6
618.9 5	1.3 1	3291.7	(7^{-})	$2672.8 5^{-}$			
627.7 <mark>6</mark> 3	5.1 ^b 1	2482.6	3-	1854.9 2+			
627.7 <mark>0</mark> 2	50.3 ^b 4	2857.4	6+	2229.7 4+	Q		DCO(1)=1.95 5; DCO(2)=1.05 2
648.5 [@] 5	≈0.8	6689.1	(13 ⁻)	6040.6 (12 ⁻)	D+Q		DCO(1)=0.84 18; DCO(2)=0.42 11
697.0 ^{#c} 5		8158.8?		7461.8			
699.5 <mark>#@</mark> 5		7461.8		6762.2 (14-)			
778.3 5	1.4 <i>I</i>	1854.9	2+	1076.6 2+			
807.0 <i>3</i>	13.1 <i>3</i>	3664.4	(7^{-})	2857.4 6+	D		DCO(1)=0.92 4; DCO(2)=0.68 6
821.9 <i>3</i>	12.8 <i>3</i>	4976.3	(10^{+})	4154.4 (8 ⁺)	Q		DCO(1)=1.96 7; DCO(2)=1.27 4
826.1 5	2.4 1	3055.8	(6 ⁻)	2229.7 4+	[M2+E3]		
925.1 5	1.4 <i>I</i>	3782.5	(6^{+})	2857.4 6+			
1027.6 [@] 5	1.8 <i>I</i>	6040.6	(12^{-})	5013.0 (11-)	D+Q		DCO(1)=1.13 8
1059.6 5	≈0.8	5983.6		4924.0			
1076.6 2	100	1076.6	2+	$0.0 \ 0^+$	Q		DCO(1)=1.68 4; DCO(2)=0.99 1
1125.5 2	24.9 6	5834.7	(11^{-})	4709.2 (10 ⁺)	D		DCO(2)=0.53 6
1153.1 2	75.6 12	2229.7	4+	1076.6 2+	Q		DCO(1)=1.60 4; DCO(2)=1.07 2
1198.3 <i>3</i>	7.5 4	4154.4	(8^{+})	2956.1 8+	D+Q		DCO(2)=0.55 3
1228.8 <i>3</i>	11.5 3	6205.1	(12^{+})	4976.3 (10+)			DCO(2)=0.76 5
1259.6 5	4.4 2	4924.0	(0+)	3664.4 (7 ⁻)			
1297.0 5	2.2 1	4154.4	(8 ⁺)	2857.4 6+	Q		DCO(2)=0.88 13
1389.5 5	1.5 1	5543.9	(9 ⁻)	$4154.4 (8^+)$	D		$DCO(2)=0.36\ 16$
1435.3 3	5.0 2	/640.5	(14')	$6205.1 (12^{+})$	(Q)		$DCO(2)=0.83 \ 10$
1552.8 5	3.8 2	5782.5	(6 ⁺)	2229.7 4*	Q		DCO(2)=0.94 10

Continued on next page (footnotes at end of table)

⁸²Se(⁹Be,5nγ) 2014Li25 (continued)

$\gamma(^{86}Sr)$ (continued)

E_{γ}^{\dagger}	Ι _γ ‡	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.&	Comments
1753.1 2	40.8 9	4709.2	(10+)	2956.1	8+	Q	DCO(2)=1.00 5
1854.9 5	2.5 2	1854.9	2+	0.0	0^{+}		

[†] 2014Li25 state uncertainty of 0.2-0.5 keV depending on intensity. Evaluators assign 0.2 keV for I γ >15, 0.3 keV for I γ =5-15, and 0.5 keV for I γ <5, and when I γ not given.

^{\ddagger} At E(⁹Be)=53 MeV.

[#] 697.0g and 699.5 γ form a doublet.

[@] 699.5-571.0 and 648.5-1027.6 γ cascades are reversed in 2014KuZZ; orderings from 2014KuZZ given in the Adopted dataset.

& Based on $\gamma\gamma(\theta)$ (DCO) data in 2014Li25. Mult=Q refer to stretched quadrupoles (most likely E2), mult=D to stretched dipoles (most likely E1) and mult=D+Q to ΔJ =1, mixed transitions, most likely M1+E2.

^{*a*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^b Multiply placed with intensity suitably divided.

^c Placement of transition in the level scheme is uncertain.

 $^{86}_{38}{
m Sr}_{48}$

82 Se(9 Be,5n γ) 2014Li25

Level Scheme (continued)

 $^{86}_{38}{
m Sr}_{48}$

3664.4

3291.7

3055.8

2672.8

⁸²Se(⁹Be,5nγ) 2014Li25

 $^{86}_{38}{
m Sr}_{48}$