²³⁸U(⁸²Se,⁸⁶Seγ) 2015Li42

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Balraj Singh	ENSDF	31-Jan-2016						

States in ⁸⁶Se populated through 4n-transfer reaction.

 $E(^{82}Se)=577$ MeV provided by Tandem-XTU and ALPI superconducting LINAC at INFN-Legnaro. Target=2 mg/cm² thick evaporated on 1.2 mg/cm² thick Ta backing facing the beam. Measured E γ , I γ , (^{86}Se) γ -coin, level lifetimes by recoil-distance Doppler shift (RDDS) using Cologne Plunger device, in which a ^{93}Nb degrader foil of 4.1 mg/cm² thickness was mounted downstream for slowing down the projectile-like recoils. PRISMA magnetic spectrometer was used for mass separation using B ρ - ΔE -TOF method, and position information of recoils measured by micro-channel plate (MCP) detector and multiwire parallel-plate avalanche counters (MWPPAC). The AGATA demonstrator array of five triple clusters of 36-fold segmented HPGe detectors was used for the detection of Doppler-corrected γ -rays. Level lifetimes were extracted from (^{86}Se) γ -coin spectra generated with a condition on total kinetic energy loss (TKEL) of recoils, the latter generated from event-by-event analysis using relativistic two-body kinematics. Comparison with large-scale shell model calculations using several different effective interactions.

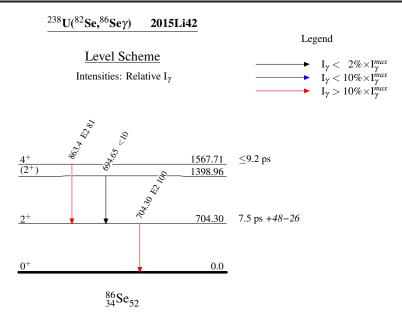
⁸⁶Se Levels

See 2015Li42 for proposed configuration assignments.

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	Comments
0.0	0^{+}		
704.30 5	2+	7.5 ps +48-26	
1398.96 7	(2^{+})		
1567.71 12	4+	≤9.2 ps	$T_{1/2}$: effective half-life=6.9 ps +23-15, upper limit is given by 2015Li42 since no
			information is available about feeding of this state from higher levels.

[†] From $E\gamma$ values.

[‡] From Adopted Levels.


[#] From RDDS, plunger method (2015Li42), unless otherwise stated.

$\gamma(^{86}Se)$

Evaluator obtains $B(E2) \ge 0.0128$, $B(E2)(W.u.) \ge 5.7$.

E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [†]	Comments
694.65 5 704.30 5 863.4 1	<10 100 81 9	1398.96 704.30 1567.71	(2^+) 2^+ 4^+	$\begin{array}{c cccc} \hline 704.30 & 2^+ \\ 0.0 & 0^+ \\ 704.30 & 2^+ \end{array}$	E2 E2	$B(E2)\downarrow=0.044 + 26 - 17 (2015Li42) B(E2)\downarrow\geq 0.0140 (2015Li42) B(E2)(W.u.)\geq 6.2$

[†] From Adopted Gammas.

