82 Se(⁷Li,3n γ) 1994Wi04

	Histor	у	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Alexandru Negret, Balraj Singh	NDS 124, 1 (2015)	30-Nov-2014

Includes 86 Kr(p,n γ) E=2.8 MeV from 1982Fa12. Lifetime measured for the first excited state.

1994Wi04: (⁷Li,3n γ) E=35, 32, 30 MeV. Measured E γ , I γ , $\gamma\gamma$, $\gamma(\theta)$, $\gamma(\ln \text{ pol})$, $\gamma\gamma(\theta)(\text{dc})$. Lifetimes from Doppler shift attenuation method.

86 Rb Levels

E(level)	$J^{\pi \dagger}$	$T_{1/2}^{\ddagger}$	Comments
0.0	2-		
487.9 10	1^{+}	2.4 ps 3	E(level), $T_{1/2}$: from (p,n γ) (1982Fa12); half-life from DSAM.
556.07 18	6-	1.017 min 3	
780.36 21	7-		
1558.49 22	7+		
1683.72 <i>23</i>	8+		
2416.52 25	9+	0.28 ps 7	
3137.5 4	(9 ⁺)	0.55 ps 14	$T_{1/2}$: from DSAM for 1453.7+1452.7 doublet.
3281.9 <i>3</i>	10^{+}	0.69 ps 14	
3411.8 <i>3</i>	11+	5.5 ps <i>14</i>	$T_{1/2}$: from line shapes of 865.4 γ and 1598.2 γ in $\gamma\gamma$ spectrum gated by 129.9 γ .
3578.4 <i>3</i>	(10^{+})	0.28 ps +7-14	
3743.3 <i>3</i>	12+	1.32 ps <i>14</i>	
3866.1 4	(11^{+})	1.25 ps 35	
4717.0 5	13+	0.08 ps +4-5	
5293.6 4	(12^{-})	0.35 ps +7-14	
5557.4 <i>4</i>	(13^{-})	0.76 ps +14–21	
6113.6 5	(14^{-})	0.28 ps +7-14	
6455.8 6	(14^{+})	0.035 ps +42-28	
6799.5 6	(15^{-})	0.21 ps +7-14	
7413.1 6	(15)	0.42 ps +7-14	
7860.1 7	(16)	0.69 ps +14-21	

[†] As proposed by 1994Wi04, based on $\gamma(\theta)$, $\gamma\gamma(\theta)$ (DCO) and $\gamma($ lin pol) data. [‡] From DSAM. The quoted uncertainty includes 10% uncertainty for the stopping power and 0.1 ps for the side-feeding time.

$\gamma(^{86}\text{Rb})$

DCO ratios given in comments correspond to gate on $\Delta J=1$, dipole 125.2 γ . The second ratio, when given, corresponds to gate on $\Delta J=2$, quadrupole 1598 γ .

E_{γ}^{\dagger}	Iγ	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. ^{&}	α^{a}	Comments
125.2 1	62 [‡] 6	1683.72	8+	1558.49	7+	M1	0.0783	$\alpha(K)=0.0691 \ 10; \ \alpha(L)=0.00777 \ 11; \ \alpha(M)=0.001286 \ 19; \\ \alpha(N+)=0.0001513 \ 22 \\ \alpha(N)=0.0001452 \ 21; \ \alpha(O)=6.17\times10^{-6} \ 9 \\ A_2=-0.28 \ 2, \ A_4=-0.04 \ 3, \ POL=-0.35 \ 8. \\ R(DCO)=0.71 \ 3 \ (gate \ at \ 1598\gamma).$
129.9 <i>1</i>	34 [‡] 3	3411.8	11+	3281.9	10+	M1	0.0709	$\begin{aligned} &\alpha(\text{K}) = 0.0626 \ 9; \ \alpha(\text{L}) = 0.00703 \ 10; \ \alpha(\text{M}) = 0.001163 \ 17; \\ &\alpha(\text{N}+) = 0.0001369 \ 20 \\ &\alpha(\text{N}) = 0.0001313 \ 19; \ \alpha(\text{O}) = 5.58 \times 10^{-6} \ 8 \\ &\text{A}_2 = -0.28 \ 2, \ \text{A}_4 = -0.04 \ 4, \ \text{POL} = -0.36 \ 11. \\ &\text{R(DCO)} = 1.00 \ 2, \ 0.68 \ 2. \end{aligned}$

Continued on next page (footnotes at end of table)

 $^{86}_{37}$ Rb₄₉-2

				⁸² Se(⁷ Li,3	Bnγ)	1994Wi04	(continued)	
					$\gamma(^{86}\text{Rb})$) (continue	d)	
E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.&	α^{a}	Comments
144.4 3	2.6 [‡] 3	3281.9	10+	3137.5	(9 ⁺)	M1	0.0534	α (K)=0.0471 7; α (L)=0.00528 8; α (M)=0.000873 14; α (N+)=0.0001028 16
								α (N)=9.86×10 ⁻⁵ <i>15</i> ; α (O)=4.20×10 ⁻⁶ 7 Mult.: from RUL. A ₂ =-0.3 2. R(DCO)=0.99 6.
224.3 1	100 [‡] <i>10</i>	780.36	7-	556.07	6-	D+Q		$A_2 = -0.41 5, A_4 = +0.04 8.$ B(DCO) = 0.99 3, 0.63 2
263.8 <i>3</i>	4.0 [#] 6	5557.4	(13-)	5293.6	(12 ⁻)	D		Mult.: RUL marginally favors M1 over E1. B(DCO)=0.94.6, 0.58.7
287.7 3	1.4 [‡] <i>I</i>	3866.1	(11 ⁺)	3578.4	(10 ⁺)	D		Mult.: RUL marginally favors M1 over E1. $A_2=-0.4 I$.
	# .							R(DCO)=0.91 8.
331.5 1	28# 4	3743.3	12+	3411.8	11+	M1	0.00634 9	$\alpha = 0.00634 \ 9; \ \alpha(K) = 0.00561 \ 8; \alpha(L) = 0.000613 \ 9; \ \alpha(M) = 0.0001013 \ 15; \alpha(N+) = 1.198 \times 10^{-5} \ 17 \alpha(N) = 1.148 \times 10^{-5} \ 16; \ \alpha(O) = 4.96 \times 10^{-7} \ 7$
								$A_2 = -0.31 4$, $A_4 = 0.00 5$, POL=-0.40 20. R(DCO)=0.97 5, 0.65 3.
447.0 <i>3</i>	1.4 [‡] <i>I</i>	7860.1	(16)	7413.1	(15)	D		Mult.: RUL excludes E2 or M2. R(DCO)=0.7 2, 0.4 3.
487.9 556.07.18		487.9 556.07	1+ 6-	0.0	$2^{-}_{2^{-}}$	(E4)		F. Mult - from Adopted Commos
556.2.3	5.6 [#] 8	6113.6	(14^{-})	5557 4	(13^{-})	(E4) D		$R(DCO)=0.95 \ 8 \ 0.6 \ 2$
685.9 <i>.</i> 3	$2.3^{\#}$ 3	6799.5	(15^{-})	6113.6	(13^{-})	D		Mult.: RUL excludes E2 or M2.
732.8 1	42 [‡] 4	2416.52	9 ⁺	1683.72	8+	D		A ₂ =-0.25 7. R(DCO)=0.89 7.
778.1 <i>1</i>	63 [‡] 6	1558.49	7+	780.36	7-	D		A ₂ =+0.46 11, A ₄ =+0.3 2. R(DCO)=1.54 5, 1.2 2. Mult.: $\gamma(\theta)$ and DCO are consistent with ΔJ =0, dipole; however, sign of A ₄ should be negative for ΔJ =0 transitions.
865.4 2	17 [‡] 2	3281.9	10+	2416.52	9+	D		A ₂ =-0.34 5. R(DCO)=1.05 6.
903.6 <i>3</i>	6.5 [‡] 7	1683.72	8+	780.36	7-	D		$A_2 = -0.2 \ l, A_4 = +0.1 \ 2.$ R(DCO)=0.9 2 (gate at 1598 γ).
957.3 <i>3</i>	1.5 [#] 2	7413.1	(15)	6455.8	(14^{+})	D		R(DCO)=1.3 3.
973.7 <i>3</i>	8.5 [#] 13	4717.0	13+	3743.3	12^{+}	D		R(DCO)=1.0 1, 0.6 2.
995.4 <i>3</i>	2.5 [#] 4	3411.8	11^{+}	2416.52	9+			R(DCO)=1.3 2.
1002.4 2	12 [‡] 1	1558.49	7+	556.07	6-	D		A ₂ =-0.17 5, A ₄ =+0.06 8. R(DCO)=0.99 3, 0.8 2.
1161.8 <i>3</i>	4.9 [‡] 5	3578.4	(10+)	2416.52	9+	D		R(DCO)=0.9 1.
1427.5 3	0.5 [#] 1	5293.6	(12 ⁻)	3866.1	(11^{+})			. ,
^x 1452.7 3	1.63 [@] 24		. /		. /			From $\gamma\gamma$, this transition feeds the 9 ⁺ , 2416 level.
1453.7 <i>3</i>	4.9 [@] 8	3137.5	(9 ⁺)	1683.72	8+			R(DCO)=0.6 l for doublet.

Continued on next page (footnotes at end of table)

⁸²Se(⁷Li,3nγ) **1994Wi04** (continued)

$\gamma(^{86}\text{Rb})$ (continued)

E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.&	α ^a	Comments
1598.2 2	19 [‡] 2	3281.9	10+	1683.72	8+	(E2)	0.000321 5	$\alpha = 0.000321 \ 5; \ \alpha(K) = 0.0001750 \ 25; \alpha(L) = 1.86 \times 10^{-5} \ 3; \ \alpha(M) = 3.07 \times 10^{-6} \ 5; \alpha(N+) = 0.0001247 \ 1 \alpha(N) = 3.48 \times 10^{-7} \ 5; \ \alpha(O) = 1.520 \times 10^{-8} \ 22; \alpha(IPF) = 0.0001243 \ 18 A_2 = +0.07 \ 12, \ A_4 = -0.2 \ 2. R(DCO) = 1.59 \ 7.$
1738.7 <i>3</i>	2.8 [#] 4	6455.8	(14^{+})	4717.0	13+	D		R(DCO)=1.4 3.
1814.1 <i>3</i>	3.6 [#] 5	5557.4	(13 ⁻)	3743.3	12^{+}	D		R(DCO)=1.0 2.
1881.7 <i>3</i> 1894.7 <i>3</i>	5.7 [#] 9 1.2 [#] 2	5293.6 3578.4	(12 ⁻) (10 ⁺)	3411.8 1683.72	11 ⁺ 8 ⁺	D		R(DCO)=0.8 2, 0.5 2.

[†] Uncertainty of 0.1 keV for I γ >20, 0.2 keV for I γ =10-20 and 0.3 keV for I γ <10 assigned (evaluator) based on a general comment by 1994Wi04.

[‡] From singles measurements. Uncertainty=5-10%.

[#] From $\gamma\gamma$ coin. Uncertainty=10-15%.

[@] Combined I γ for 1453.7+1452.7=6.5. Individual intensity deduced from $\gamma\gamma$ coin.

& From $\gamma(\theta)$ and $\gamma\gamma(\theta)(\text{DCO})$ ratios. Mult=M1 or E2 is from $\gamma(\text{lin pol})$ data and/or RUL.

^{*a*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^{*x*} γ ray not placed in level scheme.

