⁸⁶Mo ε decay (19.1 s) 2005Ka39,1994Sh07

	Histor	у		
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Alexandru Negret, Balraj Singh	NDS 124, 1 (2015)	30-Nov-2014	

Parent: ⁸⁶Mo: E=0; $J^{\pi}=0^+$; $T_{1/2}=19.1$ s 3; $Q(\varepsilon)=5023$ 7; $\%\varepsilon+\%\beta^+$ decay=100.0 ⁸⁶Mo- $Q(\varepsilon)$: From 2012Wa38.

2005Ka39: ⁸⁶Mo produced by a 150-170 MeV ³²S beam impinging on a ^{nat}Ni target. The reaction products were separated using the IGISOL facility and implanted into a collector tape. Two HPGe detectors and a plastic scintillator were placed next to the implantation position and two low-energy Ge detectors and a magnetic conversion-electron spectrometer (ELLI) were placed at a second detector station. Measured E γ , I γ , $\gamma\gamma$ coin, conversion electrons.

1994Sh07: ⁸⁶Mo produced in reactions ⁵⁴Fe(³⁵Cl,p2n γ) E=103 MeV, and ⁵⁸Ni(³²S,2p2n γ) E=120 MeV; identification by (x ray) γ - and $\beta\gamma$ coin and cross bombardment.

The decay scheme of ⁸⁶Mo to ⁸⁶Nb does not seem complete in view of possible missing higher levels (above the currently known level at 236+x) and high Q value, thus $I\gamma/100$ decays, ε feedings and log *ft* values cannot be deduced.

⁸⁶Nb Levels

E(level)	$J^{\pi \dagger}$	T _{1/2}	Comments
0+x	(0-,1-,2-)		Additional information 1. J^{π} : (E1) γ from (1 ⁺ ,2 ⁺). 1994Sh07 assigned (0 ⁺ ,1 ⁺ ,2 ⁺) based on (M1+E2) assignment for γ from (1 ⁺ ,2 ⁺).
49.96+x <i>15</i>	(1 ⁺ ,2 ⁺)	68 ns 2	J^{π} : (M1+E2) γ from (1 ⁺). 2 ⁺ seems less likely from some evidence of ε feeding to this level (from in-out intensity balance), however, the decay scheme, as proposed by 1994Sh07, cannot be considered as complete in view of a large gap between Q(β^+) and highest level proposed in this decay scheme. 1994Sh07 assign (1 ⁺). T _{1/2} : from $\beta(49.8\gamma)(t)$; uncertainty is statistical (1994Sh07).
97.47+x 25 236.86+x 18	(1 ⁺) (0 to 4 ⁺)		J^{π} : probable (allowed) ε feeding from 0 ⁺ . J^{π} : γ to (1 ⁺ ,2 ⁺). 1994Sh07 assign (0 ⁺ ,1 ⁺), assuming that this level is fed by ε transition.

[†] From Adopted Levels.

 ε, β^+ radiations

E(decay)	E(level)	Comments
$(2.5 \times 10^{3}^{\dagger} 25)$	97.47+x	Direct feeding to the 97+y is suggested by observed B(47.3 γ +49.8 γ) coin with β^+ end-point energy=3.9 MeV 4.

[†] Estimated for a range of levels.

γ ⁽⁸⁶ Nb)								
E _γ ‡	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^π	E_f	${ m J}_f^\pi$	Mult. [†]	α [@]	Comments
47.5 2	27 4	97.47+x	(1 ⁺)	49.96+x	(1+,2+)	(M1)	1.89 4	$ \begin{array}{l} \hline \alpha(\text{K}) \exp = 1.8 \ 3 \ (2005\text{Ka39}) \\ \alpha(\text{K}) = 1.65 \ 3; \ \alpha(\text{L}) = 0.197 \ 4; \ \alpha(\text{M}) = 0.0347 \\ 7; \ \alpha(\text{N}+) = 0.00534 \ 10 \\ \alpha(\text{N}) = 0.00506 \ 10; \ \alpha(\text{O}) = 0.000283 \ 6 \\ \text{Mult.: 1994Sh07 assign M1 based on} \\ \alpha(\text{K}) \exp = 2.7 \ 4. \end{array} $
49.95 15	58 4	49.96+x	(1+,2+)	0+x	(0 ⁻ ,1 ⁻ ,2 ⁻)	(E1)	0.889 15	$\begin{array}{l} \alpha(\text{K}) \exp = 0.65 \ 10 \ (2005\text{Ka39}) \\ \alpha(\text{K}) = 0.777 \ 13; \ \alpha(\text{L}) = 0.0931 \ 16; \\ \alpha(\text{M}) = 0.0162 \ 3; \ \alpha(\text{N}+) = 0.00239 \ 4 \\ \alpha(\text{N}) = 0.00228 \ 4; \ \alpha(\text{O}) = 0.0001067 \ 18 \end{array}$

Continued on next page (footnotes at end of table)

				⁸⁶ Μο ε dec	ay (19.1 s)	2005Ka39	,1994Sh07 (continued)
					$\gamma(^{86})$	Nb) (continu	ed)	
E _γ ‡	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult. [†]	α [@]	Comments
97.8	12 3	97.47+x	(1 ⁺)	0+x	(0 ⁻ ,1 ⁻ ,2 ⁻)	(E1)	0.1278	B(E1)(W.u.)=2.17×10 ⁻⁵ 7 Mult.: 1994Sh07 assign (M1+E2) based on α (K)exp=1.4 2. α (K)exp=0.09 5 (2005Ka39) α (K)=0.1124 16; α (L)=0.01287 18; α (M)=0.00225 4; α (N+)=0.000339 5
186.9 <i>1</i>	12 <i>3</i>	236.86+x	(0 to 4 ⁺)	49.96+x	(1+,2+)	(E1,M1)	0.030 11	$\begin{aligned} &\alpha(N) = 0.000322 \ 5; \ \alpha(O) = 1.666 \times 10^{-5} \ 24 \\ & \text{E}_{\gamma}: \ \text{from } 2005\text{Ka39}. \\ &\alpha(K) \exp < 0.04 \ (2005\text{Ka39}) \\ &\alpha(K) = 0.027 \ 10; \ \alpha(L) = 0.0031 \ 12; \\ &\alpha(M) = 0.00054 \ 21; \ \alpha(N+) = 8.\text{E} - 5 \ 4 \\ &\alpha(N) = 8.\text{E} - 5 \ 3; \ \alpha(O) = 4.4 \times 10^{-6} \ 18 \end{aligned}$

[†] From $\alpha(K)$ exp.

[‡] Unweighted average from 2005Ka39 and 1994Sh07, unless noted otherwise.
[#] From 2005Ka39.
[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

⁸⁶Mo ε decay (19.1 s) 2005Ka39,1994Sh07

Decay Scheme

