Adopted Levels, Gammas

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Alexandru Negret, Balraj Singh	NDS 124, 1 (2015)	30-Nov-2014				

 $Q(\beta^{-})=7633 \ 3; \ S(n)=5128 \ 4; \ S(p)=10508 \ 4; \ Q(\alpha)=-7954 \ 5$ 2012Wa38

S(2n)=13992 26, S(2p)=24357 4 (2012Wa38).

⁸⁶Br nuclide first produced in decay of ⁸⁶Se by 1960Sa05 who assigned a 16-s activity incorrectly to ⁸⁷Se decay, instead of correct assignment of ⁸⁶Se to ⁸⁶Br. Confirmed identification is from the work of 1962St13, and several later studies. It is possible that a 50-70 s activity found by 1959Ye08 belonged to 86 Br.

A 4.5 s 10 (possible isomeric) activity was assigned to 86 Br by 1970Lu06 from the decay pattern of 1564 γ in 86 Kr, but the existence of this activity remains unconfirmed.

In 2009Po10 from comparison with ⁸⁸Rb structure authors suggest that level 1624 keV is 10 ns isomer, but this was not confirmed in experiment.

Precise mass measurement using Penning-trap spectrometer: 2007Ra23.

⁸⁶Br Levels

Cross Reference (XREF) Flags

۸	86 Se B-	decay	(1/3 s)	
A	se p	decay	(14.3 S)	

- ⁸⁷Se β⁻ⁿ decay (5.50 s) ²⁰⁸Pb(¹⁸O,Fγ) В
- С

E(level)	\mathbf{J}^{π}	T _{1/2}	XREF	Comments
0	(1-)	55.1 s 4	A C	$%β^-=100$ J ^π : log f ^{lu} t≈9.6 to 0 ⁺ . Possible configuration= $\pi p_{3/2} \otimes v d_{5/2}$ (2009Po10). T _{1/2} : weighted average of 55.2 s 5 (1976LuZV), 55.7 s 5 (1974Gr29), and 54.1 s 6 (1972KrYX). Others: 55 s 2 (1975Hu02), 1972Nu03, 59 s 4 (1972Ac01), 54 s 2 (1962St13), 1.0 min (1960Sa05, authors assigned ⁸⁷ Se to ⁸⁷ Br activity incorrectly, half-life of 16 s for parent activity suggests correct assignment as ⁸⁶ Se to ⁸⁶ Br), 50-70 s (1959Ye08).
5.1 [†] 3	(2 ⁻)		A C	E(level): from the differences of the 430.5 γ -435.5 γ and 1042.0 γ -1047.1 γ doublets. Another evidence for the existence of this level is the depopulation of the 207.5 level by the 154.2 γ -48.3 γ cascade. J ^{π} : γ from 1 ⁺ . Possible 2 ⁻ state of configuration= $\pi f_{5/2} \otimes v d_{5/2}$ (2009Po10).
53.3 [†] 3	(3-)		AC	J ^{π} : M1 to (2 ⁻). Possible 3 ⁻ state of configuration= $\pi f_{5/2} \otimes v d_{5/2}$. J ^{π} =3 ⁻ is in conflict with log <i>ft</i> =6.2 (log <i>f</i> ^{1u} <i>t</i> =8.1) from 0 ⁺ in β ⁻ decay, but the β feeding in this decay to the 53-keV level is only an apparent value due to possible unobserved γ transitions feeding this level from higher-energy levels.
130.5 4	(4 ⁻)		С	J^{π} : M1(+E2) γ to (3 ⁻). Possible 4 ⁻ state of configuration= $\pi p_{3/2} \otimes v d_{5/2}$ (2009Po10).
207.39 24	$(1^{-},2^{-})$		Α	J^{π} : log ft=7.0 (log f ^{1u} t=8.7) from 0 ⁺ ; γ to (3 ⁻).
243.6 [†] 4	(4 ⁻)		С	J ^{π} : (M1) γ to (3 ⁻). Possible 4 ⁻ state of configuration= $\pi f_{5/2} \otimes v d_{5/2}$.
298.2 4	(0 ⁻ to 4 ⁻)		Α	J^{π} : γ to (2^{-}) .
435.65 25	(1 ⁻ ,2)		Α	J^{π} : γ rays to (1^{-}) and (3^{-}) ; γ from 1^{+} .
574.7 [†] 4	(5 ⁻)		С	J ^{π} : γ rays to (4 ⁻). Possible configuration= $\pi f_{5/2} \otimes v d_{5/2}$.
1047.2 <i>3</i>	(1 ⁻ ,2)		Α	J^{π} : γ rays to (1^{-}) and (3^{-}) ; γ from 1^{+} .
1170.4 4	$(1^{-}, 2^{-})$		Α	J^{π} : log <i>ft</i> =6.9 (log $f^{lu}t$ =8.6) from 0 ⁺ ; γ to (3 ⁻).
1494.2 5			C	
1624.3 <i>4</i> 1779.7 <i>7</i> 1920 2 <i>7</i>	(/')		C C	J [*] : possible configuration= $\pi g_{9/2} \otimes v d_{5/2}$ (2009Po10).
2446.3.3	1+		A	$I^{\pi}: \log t = 4.2$ from 0^+ .
2665.1 4	1+		A	E(level): the level may be at 2660, if 2660γ feeds g.s

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

⁸⁶Br Levels (continued)

E(level)	XREF	Comments
		J^{π} : log ft=4.6 from 0 ⁺ .
2687.4 5	С	
3073.9 8	С	
3240.5 6	С	
3763.3 7	С	
3814.0 6	С	

 $\gamma(^{86}\mathrm{Br})$

[†] Band(A): $\pi f_{5/2}^{-1} \otimes \nu d_{5/2}^{+1}$ sequence.

E_i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult.	δ	α^{\dagger}	Comments
5.1 53.3	(2 ⁻) (3 ⁻)	(5.1) 48.3 <i>3</i>	100 100	0 5.1	(1 ⁻) (2 ⁻)	M1		0.889 21	E _γ : from level-energy difference. $\alpha(K)=0.785 \ 18; \ \alpha(L)=0.0884$ 21; $\alpha(M)=0.0141 \ 4; \ \alpha(N+)=0.00130 \ 3$ $\alpha(N)=0.00130 \ 3$
130.5	(4 ⁻)	77.0 5	100	53.3	(3 ⁻)	M1(+E2)	<0.3	0.32 9	Mult.: from $\alpha(\exp)$ (2009Po10). $\alpha(K)=0.28 \ 8; \ \alpha(L)=0.035 \ 13;$ $\alpha(M)=0.0056 \ 20;$ $\alpha(N+)=0.00050 \ 16$ $\alpha(N)=0.00050 \ 16$ Mult.: from $\alpha(\exp)$ (2009Po10); δ deduced by the evaluators
207.39	(1 ⁻ ,2 ⁻)	154.2 <i>4</i> 207 5 3	39 2 100 5	53.3	(3^{-}) (1^{-})				
243.6	(4 ⁻)	190.3 2	100 5	53.3	(1 ⁻) (3 ⁻)	(M1)		0.0206	$\alpha(K)=0.0183 \ 3; \ \alpha(L)=0.00199 \ 3; \ \alpha(M)=0.000316 \ 5; \ \alpha(N+)=2.95\times10^{-5} \ 5 \ \alpha(N)=2.95\times10^{-5} \ 5 \ Mult.: from Adopted \Delta J^{\pi} and systematics of transitions in neighboring nuclides$
298.2	(0 ⁻ to 4 ⁻)	293.2 4	100	5.1	(2 ⁻)				heighteering haenaes.
435.65	$(1^{-},2)$	228.4 4	22 1	207.39	$(1^{-},2^{-})$				
		382.4 3 130 5 1	100 5	53.5 51	(3) (2^{-})				
		435.5 4	10 7	0	(2^{-})				
574.7	(5 ⁻)	331.1 2	100 8	243.6	(4^{-})				
		444.3 <i>3</i>	25 4	130.5	(4-)				
1047.2	(1 ⁻ ,2)	611.6 5	9	435.65	(1 ⁻ ,2)				
		749.0 4	32 1	298.2	$(0^{-} \text{ to } 4^{-})$				
		839.6 5	9	207.39	$(1^{-},2^{-})$				
		993.8 4	100 5	53.3	(3^{-})				
		1042.0 4	23 I 10	5.1	(2)				
1170 4	$(1-2^{-})$	104/.1 J 1117 0 4	10	U 52.2	(1) (2^{-})				
1404 2	(1,2)	010 5 <i>A</i>	33 17	55.5 574 7	(5^{-})				
1 177.4		1250.8.5	100 33	243.6	(4^{-})				

Adopted Levels, Gammas (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	\mathbf{E}_{f}	J_f^π	Mult.	Comments
1624.3	(7^{+})	130.4 5	10 4	1494.2			
		1049.6 2	100 10	574.7	(5^{-})		
		1493.5 5	16 8	130.5	(4-)	[E3]	
1779.7		1205.0 5	100	574.7	(5-)		
1920.2		1345.5 5	100	574.7	(5-)		
2446.3	1^{+}	1275.8 4	5.1 3	1170.4	$(1^{-}, 2^{-})$		
		1399.0 <i>3</i>	13.3 7	1047.2	$(1^{-},2)$		
		2010.6 3	23.7 12	435.65	$(1^{-},2)$		
		2239.0 <i>3</i>	17.9 9	207.39	$(1^{-},2^{-})$		
		2441.1 <i>3</i>	100 5	5.1	(2-)		
2665.1	1^{+}	2660.0 [‡] 3	100	5.1	(2^{-})		placement of this transition to the 5.1 level is arbitrary.
2687.4		1063.1 <i>3</i>	100	1624.3	(7^+)		1
3073.9		1153.7 5	100	1920.2	. ,		
3240.5		1616.1 5	100	1624.3	(7^{+})		
3763.3		522.8 <i>3</i>	100	3240.5			
3814.0		573.5 4	40 20	3240.5			
		1126.7 5	100 40	2687.4			

$\gamma(^{86}\text{Br})$ (continued)

[†] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[‡] Placement of transition in the level scheme is uncertain.

55.1 s 4

Adopted Levels, Gammas

 $^{86}_{35}{\rm Br}_{51}$