86 Kr(t, 3 Heγ) **2019Ti09** | History | | | | | |-----------------|------------------------|--------------------|------------------------|--| | Type | Author | Citation | Literature Cutoff Date | | | Full Evaluation | A. Negret and B. Singh | NDS 203,283 (2025) | 20-Jan-2025 | | 2019Ti09: E(t)=115 MeV/nucleon produced from fragmentation of a primary ¹⁶O beam at 150 MeV/nucleon on a ⁹Be target, followed by extraction of ³H ions using the A1900 fragment separator at the NSCL-MSU facility. Reaction target was ⁸⁶Kr gas at pressure of 1210 torr. Measured Eγ, angular distributions from 0° to 4° in the c.m. system, and (³He)γ-coin using the GRETINA array of 36-fold segmented, 32 HPGe crystals, and the S800 spectrograph. FWHM ≈400 keV for particles. Deduced cross sections for population of states in ⁸⁶Br, ΔL values of transitions using multipole decomposition analysis (MDA), Gamow-Teller transition strength from ⁸⁶Kr to ⁸⁶Br, and stellar electron-capture rates based on the extracted B(GT) strengths. Comparison with shell-model and quasiparticle random-phase approximation (QRPA) calculations. Gamow-Teller strength distributions extracted from this experiment up to 5-MeV excitation energy are shown in Fig. 5 of 2019Ti09, with comparison to shell-model and QRPA calculations using NUSHELLX code. ## ⁸⁶Br Levels | E(level) [†] | J^{π} | <u>L</u> ‡ | Comments | |-----------------------|-----------|------------|--| | ≈200 | 4- | ≥1 | E(level): this level corresponds to the 130.89 in Adopted Levels. | | | | | J^{π} : 2019Ti09 took the assignment from 2016Ur04. | | | | | 77-keV γ associated with the excitation energy of \approx 200 keV. | | 244.02? | 4- | | E(level): from the Adopted Levels. | | | | | J^{π} : 2019Ti09 took the assignment from 2016Ur04. | | | | | A weak and uncertain 191-keV γ possibly associated with the excitation energy of 244 keV. | | ≈900 | | ≥2 | 932-keV γ associated with the excitation energy of \approx 900 keV. | | ≈1700 | | 0,2 | L: MDA for ≈ 1.7 MeV excitation associated with 1753 γ . | | | | | 942-keV and 1753-keV γ rays associated with the excitation energy of \approx 1700 keV. | | | | | Deduced Gamow-Teller strength=0.045 +43-45 (2019Ti09). | | ≈2300 | | 1 | L: MDA for \approx 2.3 MeV excitation associated with 1427 γ . | | | | | 932-keV and 1427-keV γ rays associated with the excitation energy of \approx 2300 keV. 2019Ti09 also | | | | | considered the possibility that 2361γ was associated with 2300 keV excitation, in view of large | | | | | uncertainty of 300 keV for excitation energy. | | | | | If all the three γ rays 932, 1427 and 2361 are associated with 2300 keV excitation, then this state is not | | | | | 1 ⁺ , as a Gamow-Teller transition. | | ≈2400 | | 0,2 | L: MDA for \approx 2.4 MeV excitation associated with 2361 γ . | | | | | 2361-keV γ associated with the excitation energy of \approx 2400 keV. However, 2019Ti09 also considered | | | | | the possibility that 2361γ was associated with 2300 keV excitation, in view of large uncertainty of 300 | | | | | keV for excitation energy. | | | _ | | Deduced Gamow-Teller strength=0.063 +46-63 (2019Ti09). | | ≈2600 | 2- | 1 | J^{π} : from 2019Ti09. 2016Ur04 assigned 1 ⁻ ,2 for a 2551 level. | | 2100 | _ | | 382-keV γ associated with the excitation energy of \approx 2600 keV. | | ≈3100 | 2- | ≥1 | J^{π} : from 2019Ti09. 2016Ur04 assigned 1 ⁻ ,2 for a 2797 level. | | 2600 | | | 207-keV γ associated with the excitation energy of \approx 3100 keV. | | ≈3600 | | ≥1 | 207-keV γ associated with the excitation energy of \approx 3600 keV. | [†] Deduced by 2019Ti09 from a gate width of ≈1.5 MeV placed around each of the excitation energy peak in the excitation energy spectrum, with uncertainty stated by authors as \approx 0.3 MeV. $^{^{\}ddagger}$ From multipole decomposition analysis (MDA) of angular distribution data for excited states up to 5 MeV excitation energy (shown in Fig. 4 of 2019Ti09) associated with relevant γ -ray peaks, and the use of DWBA code FOLD. All the values are listed as tentative by 2019Ti09. ## 86 Kr(t, 3 He γ) 2019Ti09 (continued) ## γ (86Br) | E_{γ}^{\dagger} | $E_i(level)$ | Comments | |------------------------|--------------|--| | ^x 77 | | This γ associated with the excitation energy of \approx 200 keV. | | ^x 191 | | A weak and uncertain γ possibly associated with the excitation energy of a known level at 244 keV. | | ^x 207 | | Doublet, the γ rays associated with the excitation energies of \approx 3100 keV and \approx 3600 keV. | | x382 | | This γ associated with the excitation energy of ≈ 2600 keV. | | ^x 932 | | Doublet, the γ rays associated with the excitation energies of \approx 900 keV and \approx 2300 keV. | | x942 | | This γ associated with the excitation energy of ≈ 1700 keV. | | ^x 1427 | | This γ associated with the excitation energy of ≈ 2300 keV. | | ^x 1753 | | This γ associated with the excitation energy of ≈ 1700 keV. | | ^x 2361 | | This γ associated with the excitation energy of \approx 2300 and/or \approx 2400 keV excitation. | [†] Deduced by 2019Ti09 with a gate width of ≈5 keV placed around each γ -ray peak in the γ spectrum. γ ray not placed in level scheme.