86 Kr(t, 3 Heγ) **2019Ti09**

History				
Type	Author	Citation	Literature Cutoff Date	
Full Evaluation	A. Negret and B. Singh	NDS 203,283 (2025)	20-Jan-2025	

2019Ti09: E(t)=115 MeV/nucleon produced from fragmentation of a primary ¹⁶O beam at 150 MeV/nucleon on a ⁹Be target, followed by extraction of ³H ions using the A1900 fragment separator at the NSCL-MSU facility. Reaction target was ⁸⁶Kr gas at pressure of 1210 torr. Measured Eγ, angular distributions from 0° to 4° in the c.m. system, and (³He)γ-coin using the GRETINA array of 36-fold segmented, 32 HPGe crystals, and the S800 spectrograph. FWHM ≈400 keV for particles. Deduced cross sections for population of states in ⁸⁶Br, ΔL values of transitions using multipole decomposition analysis (MDA), Gamow-Teller transition strength from ⁸⁶Kr to ⁸⁶Br, and stellar electron-capture rates based on the extracted B(GT) strengths. Comparison with shell-model and quasiparticle random-phase approximation (QRPA) calculations.

Gamow-Teller strength distributions extracted from this experiment up to 5-MeV excitation energy are shown in Fig. 5 of 2019Ti09, with comparison to shell-model and QRPA calculations using NUSHELLX code.

⁸⁶Br Levels

E(level) [†]	J^{π}	<u>L</u> ‡	Comments
≈200	4-	≥1	E(level): this level corresponds to the 130.89 in Adopted Levels.
			J^{π} : 2019Ti09 took the assignment from 2016Ur04.
			77-keV γ associated with the excitation energy of \approx 200 keV.
244.02?	4-		E(level): from the Adopted Levels.
			J^{π} : 2019Ti09 took the assignment from 2016Ur04.
			A weak and uncertain 191-keV γ possibly associated with the excitation energy of 244 keV.
≈900		≥2	932-keV γ associated with the excitation energy of \approx 900 keV.
≈1700		0,2	L: MDA for ≈ 1.7 MeV excitation associated with 1753 γ .
			942-keV and 1753-keV γ rays associated with the excitation energy of \approx 1700 keV.
			Deduced Gamow-Teller strength=0.045 +43-45 (2019Ti09).
≈2300		1	L: MDA for \approx 2.3 MeV excitation associated with 1427 γ .
			932-keV and 1427-keV γ rays associated with the excitation energy of \approx 2300 keV. 2019Ti09 also
			considered the possibility that 2361γ was associated with 2300 keV excitation, in view of large
			uncertainty of 300 keV for excitation energy.
			If all the three γ rays 932, 1427 and 2361 are associated with 2300 keV excitation, then this state is not
			1 ⁺ , as a Gamow-Teller transition.
≈2400		0,2	L: MDA for \approx 2.4 MeV excitation associated with 2361 γ .
			2361-keV γ associated with the excitation energy of \approx 2400 keV. However, 2019Ti09 also considered
			the possibility that 2361γ was associated with 2300 keV excitation, in view of large uncertainty of 300
			keV for excitation energy.
	_		Deduced Gamow-Teller strength=0.063 +46-63 (2019Ti09).
≈2600	2-	1	J^{π} : from 2019Ti09. 2016Ur04 assigned 1 ⁻ ,2 for a 2551 level.
2100	_		382-keV γ associated with the excitation energy of \approx 2600 keV.
≈3100	2-	≥1	J^{π} : from 2019Ti09. 2016Ur04 assigned 1 ⁻ ,2 for a 2797 level.
2600			207-keV γ associated with the excitation energy of \approx 3100 keV.
≈3600		≥1	207-keV γ associated with the excitation energy of \approx 3600 keV.

[†] Deduced by 2019Ti09 from a gate width of ≈1.5 MeV placed around each of the excitation energy peak in the excitation energy spectrum, with uncertainty stated by authors as \approx 0.3 MeV.

 $^{^{\}ddagger}$ From multipole decomposition analysis (MDA) of angular distribution data for excited states up to 5 MeV excitation energy (shown in Fig. 4 of 2019Ti09) associated with relevant γ -ray peaks, and the use of DWBA code FOLD. All the values are listed as tentative by 2019Ti09.

86 Kr(t, 3 He γ) 2019Ti09 (continued)

γ (86Br)

E_{γ}^{\dagger}	$E_i(level)$	Comments
^x 77		This γ associated with the excitation energy of \approx 200 keV.
^x 191		A weak and uncertain γ possibly associated with the excitation energy of a known level at 244 keV.
^x 207		Doublet, the γ rays associated with the excitation energies of \approx 3100 keV and \approx 3600 keV.
x382		This γ associated with the excitation energy of ≈ 2600 keV.
^x 932		Doublet, the γ rays associated with the excitation energies of \approx 900 keV and \approx 2300 keV.
x942		This γ associated with the excitation energy of ≈ 1700 keV.
^x 1427		This γ associated with the excitation energy of ≈ 2300 keV.
^x 1753		This γ associated with the excitation energy of ≈ 1700 keV.
^x 2361		This γ associated with the excitation energy of \approx 2300 and/or \approx 2400 keV excitation.

[†] Deduced by 2019Ti09 with a gate width of ≈5 keV placed around each γ -ray peak in the γ spectrum. γ ray not placed in level scheme.