86 Ge $β^-$ decay (221.6 ms) 2015Ma61

History								
Type	Author	Citation	Literature Cutoff Date					
Full Evaluation	A. Negret and B. Singh	NDS 203.283 (2025)	20-Jan-2025					

Parent: 86 Ge: E=0; $J^{\pi}=0^+$; $T_{1/2}=221.6$ ms 11; $Q(\beta^-)=9.56\times10^3$ 44; $\%\beta^-$ decay=100

Dataset adapted from a compiled dataset from 2015Ma61 by A.A. Sonzogni (NNDC, BNL), Dec 01, 2015, and made available in the XUNDL database.

2015Ma61: ⁸⁶Ge beam produced in U(p,F),E=50 MeV at the Holifield Radioactive Ion Beam facility (HRIBF) in ORNL, followed by electromagnetic separation of the fission fragments. The radioactive ion beam pf 18% ⁸⁶Ge and 82% ⁸⁶As was implanted on a moving tape collector (MTC). Measured Eγ, Iγ, βγγ-coin, γγ-coin using four HPGe clover detectors for γ rays and two plastic scintillators for β radiation. Comparison with shell-model calculations. In an earlier study by 2013Ma22 from the same experimental group at ORNL, T_{1/2} of ⁸⁶Ge decay and energies of two γ rays of 111.7 and 118.9 keV were measured.

Theory references for $T_{1/2}$ of 86 Ge decay: 2022Qu03, 2016Sh39, 2016So03, 2015Sa14, 2012Ch48, 2005Bo19, 1981Al25.

The decay scheme is considered incomplete by the evaluators as at least two strong γ rays remain unassigned and unplaced. In addition, large difference between $Q(\beta^-)=9560$ 440 and the highest level at 2917 keV in the present decay scheme allows the possibility of unobserved γ transitions from higher levels.

⁸⁶As Levels

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\ddagger}$	Comments
0.0	$(1^-,2^-)$	0.945 s 8	
7.1 4			J^{π} : $(0^{-},1^{-},2^{-})$ proposed by 2015Ma61.
21.3 6			J^{π} : $(0^{-}, 1^{-}, 2^{-})$ proposed by 2015Ma61.
118.9 <i>3</i>			J^{π} : $(0^{-}, 1^{-})$ proposed by 2015Ma61.
244.3 <i>4</i>			J^{π} : $(0^{-}, 1^{-})$ proposed by 2015Ma61.
309.2 4			
402.5 6			
447.4 6			
481.8 <i>6</i>			
2084.3 <i>4</i>	(1^+)		
2916.9 <i>10</i>			
3844+x			E(level): $x < 5716 \ 444 \ \text{from } Q(\beta^-)(^{86}\text{Ge}) = 9560 \ 440 \ \text{and } S(n)(^{86}\text{As}) = 3844 \ 5 \ (2021\text{Wa}16).$

 $^{^{\}dagger}$ From least-squares fit to E γ data.

β^- radiations

E(decay)	E(level)	$I\beta^{-\dagger}$	Comments
$(2.6 \times 10^{3} $ # 26)	3844+x	24.5 12	$I\beta^-$: from $\%\beta^-$ n=24.5 12 for ⁸⁶ Ga decay.
$(6.6 \times 10^{3 \ddagger} 5)$	2916.9		Apparent I β =4% 2 (2015Ma61). Evaluators deduce 5.9% 23 using revised γ -normalization factor.
$(7.5 \times 10^3 5)$	2084.3		Apparent I β =11% 4 (2015Ma61). Evaluators deduce 19% 5 using revised γ -normalization factor.
$(9.1 \times 10^{3 \ddagger} 5)$	481.8		Apparent I β =2.0% 9 (2015Ma61). Evaluators deduce 3.4% 11 using revised γ -normalization factor.
$(9.1 \times 10^{3 \ddagger} 5)$	447.4		Apparent I β =2.4% 10 (2015Ma61). Evaluators deduce 4.0% 14 using revised γ -normalization factor.
$(9.2 \times 10^{3 \ddagger} 5)$	402.5		Apparent I β =0.9% 5 (2015Ma61). Evaluators deduce 1.7% 7 using revised γ -normalization factor.

Continued on next page (footnotes at end of table)

⁸⁶Ge-T_{1/2}: from ⁸⁶Ge Adopted Levels.

⁸⁶Ge-Q(β^-): From 2021Wa16.

 $^{^{86}}$ Ge-%β⁻ decay: %β⁻n=24.5 12 from 86 Ge Adopted Levels. Other: 45 15 (2013Mi19).

[‡] From Adopted Levels, Gammas.

$^{86}\mathrm{Ge}\,\beta^-$ decay (221.6 ms) 2015Ma61 (continued)

β^- radiations (continued)

E(decay)	E(level)	Comments			
$(9.3 \times 10^{3 \ddagger} 5)$	309.2	Apparent I β =1.3% 5 (2015Ma61). Evaluators deduce 2.3% 7 using revised γ -normalization factor.			
$(9.3 \times 10^{3} \ddagger 5)$	244.3	Apparent I β =4% 2 (2015Ma61). Evaluators deduce 6.8% 17 using revised γ -normalization factor.			
$(9.4 \times 10^{3} \ddagger 5)$	118.9	$I\beta$ =3.6% 33 (2015Ma61). Evaluators deduce 6% 6 using revised γ-normalization factor.			
$(9.5 \times 10^3 5)$	21.3	$I\beta^-$: 2015Ma61 assumed $I\beta$ =0.4% to 4% from expected log ft =6.0 to 7.0 for first-forbidden transitions.			
$(9.6 \times 10^3 5)$	7.1	$I\beta^-$: 2015Ma61 assumed $I\beta$ =0.4% to 4% from expected log ft =6.0 to 7.0 for first-forbidden transitions.			
$(9.6 \times 10^{3 \ddagger} 5)$	0.0	$I\beta^-$: 2015Ma61 assumed $I\beta$ =0.4% to 4% from expected log ft =6.0 to 7.0 for first-forbidden transitions.			

$\gamma(^{86}As)$

From the decay scheme in 2015Ma61, evaluators deduce γ -normalization factor of 0.283 51 from $I(\gamma + ce)(97.6\gamma) +$ $I(\gamma + ce)(111.8\gamma) + I(\gamma + ce)(118.9\gamma) + I(\gamma + ce)(178.1\gamma)$, for mult=M1,E2,E1) + $I(\gamma)(441.1\gamma) = 64$ 11 from 100-% β ⁻n (adopted from 100-% β) $\%\beta^-$ n=24.5 12), and estimated 12% 11 (2015Ma61) feeding to the three lowest levels: g.s., 7 keV and 21 keV. However, as the decay scheme is incomplete, no meaningful normalization factor can be adopted.

$\mathrm{E}_{\gamma}^{\ \sharp}$	I_{γ}	E_i (level)	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	$\alpha^{m{b}}$	$I_{(\gamma+ce)}^{\#}$	Comments
97.6 5	10.9 27	118.9	21.3	[M1] ^a	0.0961 20	12 3	
111.8 <i>3</i>	94 7	118.9	7.1	[M1] ^a	0.0665 11	100 7	E γ =111.7 γ from ⁸⁶ Ge β ⁻ decay reported by 2013Ma22. The 111.7 γ and 118.9 γ in 2013Ma22 were reported to be in coincidence, but in 2015Ma61, gate at 112 γ shows no evidence for a 119 γ .
118.9 <i>3</i>	57 8	118.9	0.0 (1 ⁻ ,2 ⁻)	[M1] ^a	0.0563 9	60 8	E γ =118.9 γ from ⁸⁶ Ge β ⁻ decay reported by 2013Ma22. The 111.7 γ and 118.9 γ in 2013Ma22 were reported to be in coincidence, but in 2015Ma61, gate at 112 γ shows no evidence for a 119 γ .
125.4 <i>3</i>	22.9 38	244.3	118.9	[M1] ^a	0.0488 8	24 4	,
^x 178.1 [†] 3	53 8						178 γ in coin with 240.5 γ and 295.2 γ . 2015Ma61 mention that this γ is most likely in ⁸⁶ As from ⁸⁶ Ga β ⁻ decay.
190.3 <mark>&</mark> <i>3</i>	7.9 20	309.2	118.9	[M1] ^a	0.01635 24	8 2	
$x^{240.5}$ 5							240.5 γ in coin with 178.1 γ .
283.6 ^{&} 5	6 2	402.5	118.9				,
$^{x}295.2^{\dagger}5$							295.2 γ in coin with 178.1 γ .
328.5 & 5	14 <i>4</i>	447.4	118.9				,
362.9 <mark>&</mark> 5	12 3	481.8	118.9				
^x 441.1 [†] 3	30 5						2015Ma61 mention that this γ is most likely in ⁸⁶ As from ⁸⁶ Ga β ⁻ decay.
1965.4 <i>3</i>	67 11	2084.3	118.9				E _{γ} : doublet resolved from $\beta\gamma\gamma$ -coin data (2015Ma61). I _{γ} : from $\gamma\gamma$ -coin data.
2798 <mark>&</mark> 1	21 7	2916.9	118.9				,

[†] Absolute intensity per 100 decays. ‡ Existence of this branch is questionable.

[#] Estimated for a range of levels.

⁸⁶Ge β⁻ decay (221.6 ms) 2015Ma61 (continued)

γ (86As) (continued)

- [†] This γ either from β decay or β n decay of ⁸⁶As. 2015Ma61 state that the 178 γ and 441 γ most likely originate from the β decay of ⁸⁶As, but could not be placed in the level scheme.
- [‡] From 2015Ma61.
- # From 2015Ma61, with assumed mult=M1.
- [@] For low-energy (E γ <200 keV) transitions, 2015Ma61 provided transition intensity. Relative I γ values have been deduced by evaluators using conversion coefficients for assumed mult=M1.
- & γ observed only in coincidence data.
- a 2015Ma61 assumed M1 in contrast to E1 from shell-model considerations, and mult=Q or higher multipolarity for low-energy (E γ ≤150 keV) transitions are expected to lead to level half-lives of several hundred ns. In the present level scheme there is no evidence for such long-lived isomeric states. Evaluators note, however, that in Fig. 8 of 2015Ma61, agreement is poor between the experimental levels in the present decay scheme and the theoretical levels from shell-model calculations, and it seems that only the negative-parity levels were calculated from shell model.
- ^b Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with "Frozen Orbitals" approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- x γ ray not placed in level scheme.

86 Ge β – decay (221.6 ms) 2015Ma61

